MATERIALS OF CRUDE OIL REFINING: CORROSION PROBLEMS AND PREVENTION
Overview

- Introduction to Refining and Corrosion
 - Brief look at types of corrosion
- Materials Used in Refineries
 - Ferrous Alloys
 - Other Alloys
- Corrosive Substances
 - Low Temperature
 - High Temperature
- Corrosion Protection Methods
- Conclusions
Crude Oil Refining

- Necessary to create useful hydrocarbon products
- Complicated system requiring many different pressure and temperature conditions
- Diverse environmental considerations
Corrosion in Refineries

- Controls operation of process line
 - Must be watched to prevent accidents
 - Causes reduction in heating and cooling efficiency
 - Requires periodic inspection and maintenance, which halts the entire production line

- Cost of corrosion: $3.7 billion annually
 - $1.4 billion equipment replacements
 - $1.8 billion maintenance expenses
 - $0.5 billion fouling removal

Materials Used – Conditions Found

- Materials must exhibit a number of properties
 - Resist high temperatures and pressures
 - Resist hydrocarbon impurities
 - Resist air and water intrusion cycles
 - Display warning of corrosion (no spontaneous failure)
 - Must maintain strength in fire and sudden temperature changes to stop spreading of fire if accidents occur

- Limits materials to metals
 - Plastics too low temperature
 - Ceramics not strong enough and brittle

Materials Used – Ferrous Alloys

- Most common type of material used
- Standard carbon steel used to 80% of components and almost all structural applications
 - Limited corrosion resistance, mainly storage applications
- Low-alloy C-Cr-Mo steel used for applications of higher temperatures, hydrogen, and sulfide exposure
 - Used for some elevated temperature applications
- Stainless steels used exclusively for high temperature sulfidic and naphthenic acid conditions
 - Considerably more expensive and slightly reduced strength

Materials Used – Other Alloys

- Used for specific applications where cheaper ferrous alloys would fail
- Copper
 - Used for heat exchangers
 - Increased temperature conduction, but corrosion problems with contaminated water
- Nickel
 - Used for very high temperature corrosion resistance
 - Often alloyed with other metals to improve chloride resistance
- Titanium
 - Used for low temperature, but very corrosive sulfidic and chloridic environments
 - Coolers and condensers using seawater

Effect of nickel alloying on 17%-24%Cr stainless steel on resistance to stress corrosion cracking in boiling 42% magnesium chloride solution

Corrosion Problems

- Split into two categories
 - Low temperature (below 260°C)
 - Corrosion mostly by pitting and stress corrosion cracking
 - Always in the form of aqueous or other liquid solutions
 - High temperature (above 205°C)
 - Corrosion mostly by uniform thinning, local attack, and erosion-corrosion
 - Generally in the absence of water, taking the form of liquid or gaseous hydrocarbons

Low Temperature Corrosives

- Most widespread form of corrosion, but less severe
- Caused by two sources:
 - Contaminants in crude oil process stream
 - Air and water
 - Hydrogen sulfide
 - Sour water - combination of water with ammonia, hydrogen cyanide, and organic sulfides
 - Chemicals introduced, such as solvents, neutralizers, and catalysts
 - Caustic soda most prevalent

High Temperature Corrosives

- Most dangerous form of corrosion
 - High temperatures and high pressures can cause ignition
- Primarily caused by sulfur compounds in the crude oil in concentrations of 0.1% to 5.0%
- Corrosion occurs when sulfides react with metal to form metal sulfides and H₂S
- Metal corrodes faster on the heated side of furnace tubes
 - Dependent on the metal surface temperature, rather than the stream temperature

Corrosion Control Methods

- **Monitoring**
 - Off-line methods – checks during maintenance
 - Tell when equipment must be replaced
 - On-line methods – report corrosion as it happens
 - Allows control of corrosion by actively changing process variables

- **Careful material selection**
 - Model the system before construction and determine corrosive areas

- **Physical material barriers**
 - Application of corrosion resistant coatings or cladding
 - Layers of stainless steel
 - Walls of acid resistant concrete

Conclusions

- Important area of research for efficient production of fossil fuels
- Much is known about corrosion, but methods for control are still basic
- Refinery process complicated, so many forms of corrosion must be prevented concurrently
- In a world of limited petroleum resources, efficient production is extremely important