

Roofing Materials Analysis

Garret DeNolf, Kevin Henderson, Jim Fakonas, Jess Hoffman May 8, 2008

Introduction

- Roofs of homes alone take up 1.2 x 10¹⁰ m² in the US
- Small savings in energy can save much overall energy
- Six materials analyzed: Ceramic, cedar, steel, stone, PVC, asphalt
- All values were for 100 years

Transport Costs

Transport Costs

- 1.42 MJ/kg
 - Assumes 2000 miles travel, 40' truck, 26,580 kg/load, 7 miles/gallon, 132 MJ/gallon

<u>Material</u>	<u>Weight</u> (kg/m²)	<u>Transport Cost</u> (MJ/m²/100yrs)
Ceramic	25	47
Cedar	20	142
Steel	5.5	46
Stone	59	83
PVC	22	127
Asphalt	15	138

Ceramic Roofing

- Replaced every 75 years
- 25 kg/m² on roof

Cedar Roofing

- Replaced every 20 years
- 20 kg/m² on roof

Steel Roofing

- Replaced every 30 years
- 5.5 kg/m² on roof

Stone Roofing

- Replaced every 100 years
- 59 kg/m² on roof

PVC Roofing

- Replaced every 25 years
- 22 kg/m² on roof

Asphalt Roofing

- Replaced every 15 years
- 14.6 kg/m² on roof

Overall Energy Comparison

CO₂ Emissions

Conclusions

- Energy Life Cycle for 100 years
 - Highest for cedar with none burned, 50% burned, and PVC
 - Lowest for stone, followed by ceramic
- CO₂ Life Cycle for 100 years
 - Highest for PVC with 100% burned, 50% burned, and steel
 - Lowest for cedar with none burned, 50% burned, and stone
- Best overall materials
 - The materials that combined low energy and CO₂ emissions were stone and ceramic, followed by asphalt
 - Stone need a roof that can support the large weight
 - Ceramic only good for warm weather climates
 - Asphalt best overall option for less supported roof and moderate or cold climate

Questions?