

# Energy and CO<sub>2</sub> analysis of drinking cups

Scott Cronin

David Bierschenk

Alex Adler

#### Outline



- Objective
- Analysis by Phase
  - Production
  - Manufacturing
  - Use
  - Disposal
- Life Cycle Assessments
- Comparison (energy and CO2)
- Conclusion

#### Objective



- Compare Energy and CO2 footprints for coffee drinking cups
- Studied:
  - Polystyrene
  - Paper
  - Stainless steel
  - Glass
  - Polyethylene
- Coffee hour- is it best to bring your own dishes?

# Embedded Energy and CO2

- Assumptions-
  - CES embedded energy and CO<sub>2</sub> for all materials
  - 10 oz cup weights (experimentally determined)
    - Paper 7 g
    - Polystyrene 2 g
    - Stainless Steel 120 g
    - Glass 370 g
    - Polyethylene 40 g

#### Manufacturing



- Polystyrene- Expanded foam molding<sup>1</sup>
- Paper- from source <sup>1,2</sup>
- Stainless Steel- cast (calculated)
- Polyethylene- Melting energy, negligible CO<sub>2</sub>
- Glass- cast/blown<sup>1</sup>

<sup>1 &</sup>quot;Reusable and Disposable Cups: An Energy-Based Evaluation" Environmental Management. Vol 18. No.6 pp 889-

<sup>2</sup> American Paper Institute. 1990. US pulp and paperboard industry's energy use, calendar year 1989, New York; cited by Wells (1991).

#### Use



- Average Dishwasher
  - Reusable cups washed after every use
  - Energy use: ~80% water, 20% Drying<sup>1</sup>
  - Model uses average household water consumption and drying energy per load<sup>2</sup>
  - 0.06 gCO<sub>2</sub> / kJ (electric)<sup>3</sup>
     assume all energy consumed is electrical
  - Assume 50 dishes / load
- Average Wash by hand
  - Heat 1/5 gallon of water and air dry
- 1. http://www.bchydro.com/powersmart/elibrary/elibrary705.html
- 2. http://www.flatheadelectric.com/energy/appliancewattage.htm
- 3. source: http://cdiac.ornl.gov/pns/faq.html

#### Disposal



- Two Options:
  - 100% to landfill
  - -50% incinerated ( $\eta = 30\%$ ), 50% to landfill
- Sources of energy loss and CO<sub>2</sub> emission
  - Transport to landfill/incinerator
  - Energy/CO<sup>2</sup> extracted by incineration<sup>1</sup>
  - CO<sub>2</sub> released by decomposition (based on molecular formulas)











#### Disposables:















#### Reusables:























Literature break even: glass = 15 for paper, 390 for PS

#### Break-Even Energy





Literature break even: glass = 15 for paper, 390 for PS

#### Break-Even CO2



Dishwashing, no incineration



# STERN OF STE

#### Break-Even CO2

Dishwashing, w/ 50% incineration



#### Break-Even CO2



Dishwashing, no incineration



#### Break-Even CO2







#### Model Sensitivity to Assumptions

STERN LANGE STERN

- Model is very sensitive to assumptions
- Validity:
  - Total energy in paper : 700 kJ/cup
    - Compared with 550 kJ/cup¹
  - Total energy in PS: 400 kJ/cup
    - Compared with 200 kJ/cup¹
  - From earlier, the number of cups required by reusables made sense with literature values
- We believe we were able to get reasonable quantitative data

#### Conclusions



- Incineration of materials does not save much energy while producing a lot of CO2
  - Don't do it
- Washing mugs more economically drastically reduces the number of uses to save energy, CO2
- What types of dishes should be used for coffee hour dishes?
  - First choice- bring your own mug (if use it more than 20 times)
  - Second Choice- PS









## Processing Methods- Paper



### Processing Method-Polystyrene

Expanded Foam molding



C9H12

Source: CES Edupack 2005



### Processing- others

#### Use



- Average Dishwasher
  - Reusable cups washed after every use
  - Energy use: ~80% water, 20% Drying<sup>1</sup>
  - Model uses average household water consumption and drying energy per load<sup>2</sup>
  - 0.06 gCO<sub>2</sub> / kJ (electric)<sup>3</sup>
     assume all energy consumed is electrical
  - Assume 50 dishes / load
- Average Wash by hand
  - Heat 1/5 gallon of water and air dry
- Break even calculation

$$\#uses_{\text{Break even}} = \frac{E_{\textit{reusable}}}{E_{\textit{disposable}} - E_{\textit{wash}}}$$

- 1. http://www.bchydro.com/powersmart/elibrary/elibrary705.html
- 2. http://www.flatheadelectric.com/energy/appliancewattage.htm
- 3. source: http://cdiac.ornl.gov/pns/faq.html