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Abstract

A general approach for investigating the crystallography of precipitation is developed from

a systematic analysis of interfacial structures. The central hypothesis in this approach is that a

habit plane or major facet developed in a precipitation reaction is the physical realization of a

singular interface. The common characteristics in the structures of any singular interfaces are

periodicity and singularity. Similar to the division between small and large angle grain

boundaries, the distinction between the 3D primary and 2D secondary preferred state has been

specially emphasized for correct descriptions of the interfacial defects. Twelve types of singular

interfaces have been classified according to their characteristic features. The relationship be-

tween this microstructural description and the macroscopic parameters used to characterize

discrete singular interfaces is established in the framework of the model lattices, i.e. the O-

lattice/CSL/DSCL. The macroscopic parameters can be identified in reciprocal space

according to three Dg parallelism rules, where Dg is a difference vector linking correlated re-

ciprocal lattice vectors in the two lattices. These rules can consistently account for the crys-

tallography of precipitation, with either rational or irrational orientation relationship and

habit planes, observed in a broad variety of systems. Other major models in the literature have

been reviewed and their connections with the present approach have been discussed.
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1. Introduction

Control of the microstructure that results from a precipitation reaction during the

heat treatment of engineering materials is one of the ultimate goals of materials

science. The factors that control precipitation crystallography, e.g. the shape, ori-

entation, distribution, and interface stability of precipitates, are of obvious impor-
tance in this context. However, in contrast to well-developed theories that underpin

the thermodynamics and kinetics of precipitation reactions, our understanding of the

factors that determine the crystallography of precipitation is still rudimentary.

Moreover, any theoretical study of the thermodynamics and kinetics of phase

transformations must remain qualitative in nature without a full understanding of

the role of crystallography. The importance of a quantitative description of pre-

cipitation crystallography in the design and control of precipitation reactions, to

obtain certain desired properties, will become more prominent as ‘‘trial and error’’
approaches are supplanted by more scientific methods. Many structure-sensitive

microstructural features depend strongly on the orientation relationship (OR) and

habit plane (i.e. the predominant facet plane) or other facets of the boundary be-

tween a precipitate and matrix. Although precipitates often adopt a variety of

shapes, the OR and orientation of the habit plane in many precipitation systems are

frequently reproducible and are often uniquely defined. The subject matter of this

paper, ‘‘The Crystallography of Precipitation’’, addresses the question––‘‘How can

we rationalize the OR and the habit plane, for systems having a broad range of
misfits?’’

A common observation in many systems is that precipitates are fully coherent

with the matrix phase. In these systems, the crystal structure of the precipitates is

usually similar to or identical with that of the matrix, and the lattice misfit is small.

Then, the OR can often be determined a priori, e.g. symmetry elements common to

both crystals are normally parallel to one another. Strain energy is the key factor

affecting the development of the morphology of these precipitates [1–4]. However, in

many important phase transformations, the Bravais lattice and lattice constants of
the two phases are quite different. Usually, the precipitates in these systems are not



Nomenclature

Symbols and abbreviations

1 (2, 3, 5)D one (two, three, five) dimensional or dimension(s)

A, AII transformation strain or misfit strain matrices (superscript ‘II’ denotes

a secondary, while default implies a primary transformation matrix)
AI, AIIðBI;BII; . . .Þ singular interfaces classified by the structures in Table 1

aa1, ab1, aa2, ab, a0a2, a
0
b2 lattice constants

a, b, a1, b1, a2, b2 lattices or phases

BGP boundary geometrical phase

bL, bLi , b
II, bIIi , b

II
s Burgers vectors (subscript ‘s’ indicates step)

ba, bb Burgers vectors in scalar form for 1D misfit

b�i , b
II�
i , bII�s reciprocal Burgers vectors

CSL coincidence site lattice
CCSL, CCSLa, CCSLb constrained CSL, with one crystal lattice being con-

strained (subscript indicates the unconstrained lattice)

CDSCL, CDSCLa, CDSCLb constrained DSCL, with one crystal lattice being

constrained (The subscript indicates the unconstrained lattice)

cOi , c
O-II
i reciprocal vectors for the O-cell walls

DSCL complete pattern shift lattice

d relative displacement

dO terrace vector
dO spacing between O-planes

Dd difference of the interplanar spacing of the conjugate planes

hdi interplanar spacing

dCCSL spacing of planes in the CCSL

di-dis, dII
i-dis, D dislocation spacing

Dg, Dgk, Dgi difference vector between ga and gb (‘k’ denotes parallel)
fDgI;DgP-I,DgP-Ii;DgII;DgP-II, DgP-CSL;DgP-CCSLg reciprocal vectors of the O-lat-

tice, CSL, or CCSL (where ‘P ’ denotes principal)
Ec, Es, E chemical, structural component, and total interfacial energy

fg; ga; gb; ga; gb; gP-a; gP-b; gP-ai, gP-bi, gP-aCSL; gP-bCSL; gP-aCCSL, gP-bCCSL; gaCDSCL,

gP-aCDSCL; gP-bCDSCL; gstepg reciprocal vectors of crystal lattices (measur-

able vectors), and those that also define planes in the CSL, CCSL or

CDSCL (where ‘P’ denotes principal)

h step height

i (as subscript) identifies different vectors

IO interface orientation
I (II) (as superscript or subscript) indicates primary (secondary) preferred

state

I unit matrix

l vector lying over a terrace plane

Dl displacement associated with l
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n unit vector for an interface normal

{O-cell, O-element, O-lattice, O-line, O-plane} periodic features of fit/misfit

formed from superimposing lattices a and b, as described in Bollmann’s

O-lattice theory
OR orientation relationship

PTMC phenomenological theory of martensitic crystallography

P and R geometric parameters representing interfacial energy

r general unit reciprocal vector

r parameter for 1D misfit strain

T, TII displacement matrices

TEM transmission electron microscopy

v step vector
Dv displacement associated with a step

Dvc displacement associated with a step defined in a CCSL

xi vectors satisfying the O-cell wall equation

fxa; xb; x
O
i ; x

O-II
i , xCCSL

a ; xCCSL
b ; xCDSCL

a ; xCDSCL
b g vectors defined in various lattices

(in direct space)

y general vector (in direct space)

h angle between a stepped interface and the terrace plane

n, nIIi vectors for describing dislocation geometry
R reciprocal density of the CSL points relative to a crystal lattice
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fully coherent. Moreover, in some precipitation systems neither the OR nor the habit

plane is rational. 1

The reduction of the energy barrier to precipitate nucleation by the formation of

faceted low energy interfaces has been considered as the primary cause for the

development of a preferred OR, although a subsequent modification of the precip-

itation crystallography may occur during growth [5,6]. It would be desirable to

determine the interfacial energy as a function of both the OR and the interface

orientation (IO) such that local energy minima could be identified. For fully relaxed
interfaces in a simple system, e.g. grain boundaries in a pure metal [7–9], or coherent

precipitates whose misfit strain is isotropic and negligibly small [10], the interfacial

energy can be determined from atomistic calculations. Nevertheless, for more gen-

eral boundaries the calculation of interfacial energy to reasonable precision repre-

sents a major challenge for any current theory. Moreover, it appears to be a

formidable task to obtain experimental evidence for a quantitative association be-

tween the interfacial energy and a macroscopic description of the interface. Sim-

plified treatments have been proposed whereby the interfacial energy of an
1 The crystallography is rational when an accurate OR or faceted interfaces can be expressed using a

low index fhklghuvwi representation in either crystal base; otherwise it is irrational.
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interphase boundary is separated into two components: a chemical and a structural

component [11,12]. The important role of interfacial structure in determining the

energy of an interface is then made clear. However it is often difficult to separate

these components and an alternative. Perhaps more realistic approach to explain the

observations of the habit planes is to study their interfacial structures experimen-

tally. In this context, our knowledge of the structure of the habit plane and other
parts of the interface has made rapid progress as the techniques of electron

microscopy have developed [13–15].

In practice, our understanding of precipitation crystallography has, to date, lar-

gely depended on simple geometric models. These models can provide a quantitative

interpretation of the experimental observations based on an evaluation of the

interfacial lattice misfit. However, despite sharing a common geometric approach,

the constraints and particular emphases placed on the study of crystallography in the

different models vary from one author to the next. For example certain models
concentrate on one aspect of precipitation crystallography, e.g. the OR, while others

concentrate on trying to explain the habit plane. In the former category, the existence

of an invariant line (a line of zero misfit) has been suggested by Dahmen as a cri-

terion to explain the OR developed from precipitation reactions [16]. This implies

that the habit plane must contain the invariant line. However, to fix the selection of

both the invariant line and the habit plane orientation, other constraint(s) must be

invoked. The invariant line hypothesis has been tested against experimental obser-

vations in many systems, with good agreement being found between the theory and
observations [17–25]. More recently, a criterion based on the near-coincidence of

reciprocal lattice vectors has also been suggested [26]. This approach has been used

to explain the OR, or lattice correspondence.

Other models focus on interpretation of the structure of the habit plane, while the

OR is usually taken to be fixed. The structural ledge model, developed by Aaronson

and colleagues [27–29], is one example of this approach. This model evaluates the

interface in terms of the density of ‘‘patches’’ of good-fit, and provides a reasonable

explanation for the irrational habit plane found in various systems. Other ap-
proaches for rationalizing the habit plane for a given OR also interpret the habit

plane in terms of the areas of good matching of the interfacial structure [30–32].

Recently, computer modeling of the structural ledges has been extended in a near-

coincidence site model [33]. In this method both the areal density of near-coincident

sites (similar to the good fit ‘‘patches’’) and the individual area of near-coincidence

sites have been used as criteria for selecting the OR and habit plane.

The most comprehensive consideration of misfit should take both OR and IO into

account. Various parameters, to be discussed below, based on interfacial dislocation
models have been proposed to represent the interfacial energy. The magnitude of

these parameters varies with the OR and the IO, so that the OR and the IO (pre-

sumably corresponding to a local minimum of interfacial energy) can be identified. A

simple method, first suggested by Knowles and Smith [34], evaluates the interfacial

misfit in terms of the Burgers-vector content of the interface. While this approach

gives a straightforward picture of the distribution of interfacial misfit, the model is

essentially continuum in nature, since it disregards the discrete character of any
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dislocation structure in a crystalline interface. Alternative approaches include the use

of the geometric parameters P and R, defined as simple functions of the interface

dislocation spacing and Burgers vectors, as proposed by Bollmann and Nissen [35]

and extended by Ecob and Ralph [36]. However, the dislocation structures used for

the calculation of P and R are based on the assumption of a structure that always

contains three sets of dislocations, determined from a simplified O-lattice calculation
[37].

While major geometric models evaluated the lattice misfit, the development of the

CSL/DSCL model (CSL stands for coincidence site lattice, while DSCL is a term

standing for the complete pattern shift lattice 2 [37]) allows the degree of misfit to be

analyzed as the deviation from a CSL state. Though this model was originally

proposed for high angle grain boundaries [37,38], it has been extended for analysis of

interphase boundaries when a set of ‘‘good matching’’ points (CSL points) can be

identified [39,40]. The CSL/DSCL approach is usually applied when the lattice misfit
is so large that only fractional lattice point matching rather than maintenance of

coherency in individual areas is possible [41–45].

A different approach, without taking any misfit into account, was proposed by

Cahn and Kalonji [46]. By analyzing the point symmetry elements common to both

crystalline phases, they were able to identify the local energy extrema. According to

their model, the OR corresponding to a set of interface facets is associated with a

symmetry-dictated energy minimum. While this elegant approach has been applied

to explain the precipitate morphology in several systems [47,48], it is in conflict with
observations of irrational ORs and irrationally oriented habit planes in many sys-

tems. Again this suggests that the role of misfit is often so important that it cannot be

neglected.

Despite the limitation of geometric models, remarkably good agreement has been

obtained between the models and a large body of experimental data. In fact, all

published geometric models have found some supports from experimental obser-

vations. The same set of experimental data can often be explained by different

models. More frequently, however, a model that has achieved success in one system
may fail to explain the observations in another. There is no general consensus on the

validity of a particular geometrical model, since it is not clear how a geometric

parameter is related to the interfacial energy [49]. While much effort has been made

to develop models that agree with particular sets of experimental observations, less

attention has been paid to explore the conditions where a model might be valid, and

to establish the links between different models. On the other hand, while a large body

of experimental data is available, little systematic work has been done to classify

the precipitation crystallography or to identify the principles that govern the
2 Here we have followed the original definition given by Bollmann [37], but DSCL has often been

considered to stand for displacement shift complete lattice in literature. More completely, it should stand

for a lattice in which any translation vector is a displacement that can cause a complete CSL pattern shift.
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development of precipitation crystallography. The principles controlling precipita-

tion crystallography may vary with the conditions under which the boundaries are

formed, so that in a particular system one type of habit plane may be preferred over

others. It is important to recognize where any principle of a particular type might be

valid. Once this is recognized, a geometric approach can serve as a useful tool for

understanding the observations of precipitation crystallography.
The present study has made a comprehensive examination of the experimental

data for a broad range of materials and an extensive survey of the major models

for precipitation crystallography in the literature. The purpose of this paper is to

provide readers with a simple approach applicable to the understanding of pre-

cipitation crystallography in the most general systems; i.e. we seek an integrated

model that will explain observations in systems of both small and large lattice

misfit, and where the two crystals may have different Bravais lattices. We will

demonstrate that the use of concepts derived from reciprocal space rather than
direct space provides a key method to resolving the observations from many

systems.

The habit plane is assumed to be a singular interface associated with a local

energy minimum. It will be explained how a singular interface can be recognized

by their characteristic structures. The structure of a singular interface is then

described in the framework of one or two model lattices. The application of a set

of simple rules, quantitatively described in terms of a group of correlated re-

ciprocal vectors, provides an experimental link between the singular interfaces and
the model lattice descriptions. These rules are directly compared with observations

of the precipitation crystallography in a wide variety of systems. The paper also

discussed other major models in the literature and their links with the present

approach.
2. Descriptions of habit planes in terms of singular interfaces

2.1. Singular interfaces

The classification made by Balluffi and Sutton [50,51] has proved to be particu-
larly useful in describing interfaces. According to their definition, interfaces consist

of three types: singular, vicinal and general. A singular interface is ‘‘an interface, the

free energy of which is at a local minimum with respect to at least one macroscopic

geometrical degree of freedom’’; a vicinal interface is ‘‘an interface, the free energy of

which is near a local minimum with respect to at least one of the macroscopic

geometrical degrees of freedom’’; a general interface is ‘‘an interface, the free energy

of which is at, or near, a local maximum with respect to one or more macroscopic

geometrical degrees of freedom’’. Here, the term ‘‘macroscopic geometrical degree of
freedom’’ is a degree of freedom in a five dimensional boundary geometrical phase

space (5D BGP space). (This term was coined to emphasize that five variables are

required to define an interface: these are the three variables describing the OR, and
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two variables specifying the IO 3) [50]. Balluffi and Sutton’s classification emphasizes

the association of a particular interface with respect to a singularity in the energy

rather than the absolute value of the energy per se.

2.2. Habit plane hypothesis

The fact that a habit or a facet plane has a unique IO at a fixed OR, suggests that

a change of its coordinates in the 5D BGP space of a point is most likely associated

with a rise in interfacial energy. This suggestion is restated in the following

hypothesis: The habit plane (or major facet) associated with a precipitation reaction is

the physical realization of a singular interface whose interfacial energy corresponds to a

local minimum in the 5D BGP space. This hypothesis provides a physical basis on

which the crystallography of precipitation is analyzed throughout this paper. Both

the OR and the habit plane normal are such as to allow a minimum energy state to

be realized. Understanding precipitation crystallography is thus equivalent to

rationalizing the habit plane as a singular interface, the free energy of which is a local

minimum with respect to all macroscopic geometrical degrees of freedom, if a fixed

OR and IO are observed for the habit plane. However, as will be explained later, in

certain systems one degree of freedom may be left unfixed locally. In such systems a
small degree of scattering in the OR or habit plane orientation may be found.

The limitations of the approach adopted in this work should be appreciated. The

effects of temperature, particularly the contribution of the entropic term to the free

energy of the interface, have been ignored. Below some critical temperature, entropy

will influence only the depth and sharpness of the energy cusps, not its position in the

5D BGP space. Though the facets may become less distinct as temperature increases

[10,12], their coordinates in 5D BGP could be explained without considering the

temperature effect. Kinetic effects and volume strain energy might also be important
to the development of the shape of a precipitate. Although these factors should not

be overlooked, they are considered only to determine whether a particular one or a

set of singular interfaces can be realized in a given condition of precipitation. A habit

plane, if observed, should be always among the candidates of singular interfaces.

Therefore, identifying plausible singular interfaces is an essential step for rational-

izing the habit plane.
3. Characterization of singular interfaces by their structures

3.1. Association of singularities in interfacial energy and in interfacial structures

The connection between the crystallography of a phase transformation and the
choice of a habit plane based on the minimization of energy is not immediately
3 Strictly speaking one should define eight variables, with the additional three needed to define a rigid

body translation at the interface, but we will assume that the two lattices coincide at a common origin,

located at the interface.
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obvious. Although efforts have been made to develop an approximate relationship

between the structural characteristics and interfacial energy (Section 6.2), precise

data to show the association of interfacial energy and interfacial structures for

heterophase interfaces are very limited. On the other hand, the interfacial energy has

been determined from more physically rigorous models for grain boundaries [7–

9,12]. The association of the interfacial structure with minima in energy of simple
interface can provide useful information [50].

According to a study of the relationship between grain boundary structure by

Goodhew [52], the structures of many boundaries contain a fine-scale periodic

arrangement of atoms, plus one or more sets of line defects. Consider first high

angle grain boundaries. Energy cusps have been associated with coincidence type

boundaries, especially with low R values that reflect the reciprocal density of the

CSL points [7,12,52–55]. However, the R value only restricts the OR but not the

facet plane. As noted by Randle [54], a low R CSL is a necessary but not a suf-
ficient criterion for special properties of grain boundaries, and a low R boundary

that contains the highest density of the CSL points will almost certainly exhibit

special properties. The size of different facets in a R11 boundary in gold can be

rationalized based on the planar density of the CSL [56], which is consistent with

the results obtained from atomistic calculations [57]. Though a quantitative rela-

tionship can not be built between the R values and the interfacial energy, short

wavelength periodicity in the interfacial structure, usually associated with a small R
value, is an important characteristic of singular large angle grain boundaries, as
pointed out by Bollmann [58]. Prominent singular high angle grain boundaries are

often associated with identical structural units that repeat periodically along the

facets [9], and the existence of structural units of short period is ensured by dense

planar CSL points in the interfaces. In the low misorientation regime, typical

small grain boundaries always contain dislocations. For a pure tilt small angle

grain boundary, the energy cusps have been found to be associated with interfaces

with a single set of dislocations, i.e. a symmetrical tilt grain boundary, as dem-

onstrated by the c-plot [59] for a small angle boundary determined using the Read–
Shockley formula [60], or by other parameters related to the dislocation structure

[61].

Although the details of the structure of singular grain boundaries vary from one

example to the next, both experimental and theoretical results from both low and

high angle singular grain boundaries indicate a strong connection between the

periodic characteristics of the interfacial structures and the singularity in the energy.

The periodicity can be described in terms of either structural units or dislocations, or

both. It can be expected, as often implied in various experimental or theoretical
studies, that the characteristic feature of a singular interface should be independent

of the size of the facet or the location in the facet. In this context, the interfacial

structure must be periodic so that the low energy characteristic feature in the

interface can repeat ad infinitum. However, not all periodic structures define singular

interfaces. To emphasize the singular nature of the structure in a singular interface,
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we must focus only on a particular type of periodic characteristic, denoted as a

singular periodic structure, which can only be realized in discrete interfaces at energy

cusps, but not at vicinal orientations.

The results from single-phase systems can be extended to multi-component

heterophase systems, which also often exhibit characteristic periodic structures in

the habit planes [19,21,44,62–69]. In addition, the condition of a singular period-
icity is also in accord with models for heterophase interfaces, based either on the

CSL concept or periodic atomic structural units [8,52,70]. However the variation of

interfacial energy in the BGP space is much more complicated in a heterophase

system than in a homophase system due to the chemical component of the inter-

facial energy. Nevertheless, a local minimum in the structural component of the

interfacial energy in a heterophase system is often a priori the cause for the

observation of a preferred OR, which would not be necessary without the effect of

the structural component. In some cases, e.g. metal–ceramic systems, the chemi-
cal component may be the determining factor in deciding which of several possi-

ble precipitation crystallographies is favored. Taking this factor into consideration

wherever necessary, we will proceed with the hypothesis that the observed habit

plane is among the candidates of singular interfaces associated with a local mini-

mum of the structural component of the interfacial energy. Since the structural as-

pects of homophase and heterophase systems should be similar, a singular

periodicity in the interfacial structure can be considered as a necessary charac-

teristic that any singular heterophase interface must maintain over a significant
area.
3.2. Preferred states between dislocations

An interfacial structure reflects how the lattice misfit is distributed within the

interface region. The formation of dislocations implies the presence of a preferred

structure between the dislocation lines, which have automatically relaxed to a low

energy configuration. For a simple interface of small misfit, a fully coherent state is

usually expected between the dislocation lines. For a more general interface, the
structure between the dislocations will vary from one system to another.

The description of the structure between the dislocations can be greatly simplified

by adopting the classification of the preferred reference state, as suggested by

Bollmann [58]. A preferred state specifies an idealized, periodic structure, whereby

the real structure between the dislocations can be developed through a local relax-

ation, leading to elastically forced structure bearing a close resemblance to the ideal

one. Such a relaxation, though its details may vary from one location to another and

hence are difficult to specify, does not alter the overall dislocation periodicity, and
also does not affect the coordinates of the singular interfaces in the BGP space.

Bollmann has classified the preferred states into primary and secondary types [58].

The identification of the preferred state is a critical step for describing the interfacial

structure, since the Burgers vectors and the configuration of the dislocations can be
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specified only when the preferred state is defined or implied. Unlike the situation in

homophase systems, where different models pertain for small and high angle grain

boundaries, the importance of the preferred state to the description of interfacial

structure is not broadly appreciated in studies of heterophase systems. For this

reason, the two types of preferred states and the possible candidates for Burgers

vectors of interface defects are explained below.
3.2.1. Primary preferred state

This state refers to a coherent or full coincidence state. The lattice of either crystal
phase (matrix or precipitate) can be taken as the reference for the ideal state. This

state is defined by the periodic structure of the reference lattice in three dimensions

(3D). An interface favoring a primary preferred state occurs when the lattice misfit is

sufficiently small (typically less than 15%). The lattice misfit is in general assessed in

terms of the relative deviation between the correlated small vectors (the magnitude of

displacement compared with that of either correlated vector), whose correlation

relationship is defined on a basis of a one-to-one lattice point (or atom) correspon-

dence. Fig. 1a is a schematic plot of a relaxed interphase boundary exhibiting a one
dimensional (1D) misfit, where the interface adopts a primary preferred state so that

local coherency is conserved between the dislocations. Because of the loss of

coherency at the cores of the primary dislocations, such a boundary is also known as

a semi-coherent boundary. In an interface in the primary preferred state, the inter-

facial misfit strain, i.e. the primary misfit strain, is equivalent to the lattice misfit

strain for a given OR.

The misfit dislocations, corresponding to the primary preferred state in their

separated areas, are also termed primary dislocations. However, the term ‘‘primary’’
is often omitted, since the Burgers vectors of the primary dislocations are often

identical to the Burgers vectors of dislocations within either crystal. When two

patches, separated by a dislocation, conserve a coherent structure, the displacement

associated with the dislocation must be a lattice translation vector of either crystal to

ensure the repetition of the coherent structure, and it must be a vector connecting the

nearest lattice points because the border between the adjacent coherent patches must

be associated with a unit shift of the nearest neighbor relationship. Energy consid-

erations also dictate that the Burgers vectors are among the small lattice translation
vectors for crystal dislocations. Therefore, only a limited set of misfit dislocations,

specified by the crystal Burgers vectors, can be present in an interface in the primary

preferred state. For the simple 1D example in Fig. 1a, the Burgers vector of the

dislocations is either aa1 or ab1, referred to lattice a1 or b1, respectively. The interface

in Fig. 1b is between rigid lattices, whose lattice constants are identical to that in Fig.

1a. The possible misfit dislocations in the un-relaxed interface are identified, locating

at the worst matching positions. As can be seen from a comparison of Fig. 1a and b,

the relaxation does not change the average periodicity of the dislocations. Since
periodicity is a crucial signature of singular interfaces, we can identify possible

singular interfaces according to the calculated dislocation periodicity in the un-

relaxed state.
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Fig. 1. An illustration of the preferred states in a 1D model: (a) relaxed and (b) non-relaxed interfaces in a
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3.2.2. Secondary preferred state

Secondary preferred states consist of various ‘‘fractional coincidence states’’ [58].

They occur when short periodic atomic structural units, different from those of either

crystal structure, 4 are preferred in major local areas (terraces) of the interface.

Without knowing a priori the specific atomic structure between the dislocations, this

state can be conveniently described in terms of a fractional coincidence state, or as a
2D CSL preferred state, since periodic 2D CSL (in an un-relaxed state) is the nec-

essary condition for the periodic atomic structural units. The application of the CSL

model to heterophase system is different from that to the homophase systems. The

CSL model often applies to special large angle grain boundaries, such as a R3 twin

boundary in fcc crystals, in which a fully coherent structure can be realized. An

interfacial structure consisting of fully coherent patches is not regarded to be in a

secondary preferred state, no matter whether a 3D CSL of a small unit can be

constructed or not. 5

A secondary preferred state usually occurs in an interface when the lattice misfit in

the major areas of the interface is large. While the lattice misfit is assessed on a one-

to-one lattice point basis, the interfacial misfit strain in an interface in a secondary

preferred state is the secondary misfit strain, describing the deviation of the matching

condition between real lattices from the secondary preferred state. Clearly, the

interfacial misfit for this case is different from the lattice misfit. The patches where

the secondary preferred state sustains locally are separated by the secondary dislo-

cations. As suggested by Bollmann [37,58], any translation that leads to a conser-
vation of the CSL pattern must be a lattice vector of the DSCL. As for the case of the

primary dislocations, the Burgers vector of the secondary dislocation between the

adjacent patches in the preferred state is usually a vector connecting the nearest

points in the DSCL.

Fig. 1c illustrates an interface, with 1D secondary misfit strain, in which a sec-

ondary preferred state is obtained after relaxation. The corresponding reference for

the preferred state is given in Fig. 1d, where the constrained CSL (CCSL) points in

the interface are represented by gray circles. The constrained DSCL (CDSCL) used
to define the Burgers vector is identified by the dashed lines in Fig. 1d. The subscript

a in CCSLa and CDSCLa is used to denote the specially constrained state in which

lattice a2 is undeformed. The large arrows indicate that lattice b2 has been com-

pressed, so that the new lattice constant a0b2 exactly equals 3aa2=2. Alternatively, one

can define CCSLb and CDSCLb, commensurate with lattice b2, by extending lattice

a2. In Fig. 1c, the points of CCSLa and CCSLb in local interface are indicated by

open circles, with the lattice constant of the CCSLa being 3aa2 or 2a0b2, while that of
the CCSLb is 2ab2 or 3a0a2. Correspondingly, two sets of CDSCLs, CDSCLa and
CDSCLb, can be obtained, as indicated by the dashed lines in Fig. 1c. Either of these
4 The structure between primary dislocations can be considered to contain atomic structural units of

either crystal.
5 It is possible that different parts of an interface around a precipitate are in different preferred states.

Each part of the interface can then be differently modeled.
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small lattices can be taken as the basis for defining the Burgers vector of the sec-

ondary dislocations [58]. These dislocations can be determined from the mismatch

between the CDSCLa and CDSCLb (not between the CCSLa and CCSLb!), in the

same way as the primary dislocations are defined for lattices a1 and b1 in Fig. 1a or b.

Note that the planes in the different CCSLs are discontinuous, at any secondary

dislocation, upon a translation of the shortest vector in the CDSCL. In other words,
elastically constrained CSL points can only be preserved locally between the sec-

ondary dislocations. Either CCSLa or CCSLb can serve as the reference state for the

preferred state.

In more general case, when studying a stepped interface or different facets sur-

rounding a particle, the interfacial structure is intimately linked with the construc-

tion of a 3D CSL. Since the CSL pattern that represents the preferred state in the

interface is a 2D structure, any step will cause discontinuity of the 2D CSL pattern.

This is an important distinction of a secondary preferred state from the primary
preferred state, which extends in 3D. The atomic steps in an irrational interface in

the primary preferred state do not necessarily cause local loss of coherency (refer Fig.

6), and hence the areas where the preferred state is continuously preserved are

separated only by the misfit dislocations. In contrast, the areas where the secondary

preferred state is continuously preserved can be separated by either misfit disloca-

tions or steps (either associated with misfit dislocations or not). Thus, special

attention must be paid to the steps in studies of interfacial structure in a secondary

preferred state.
The choice of primary preferred state is obvious when the lattice misfit strain is

small. However, the border separating different preferred states is not always dis-

tinct. One may always draw various CCSL for a given system, but any preferred state

must be tested by experimental observations. A secondary preferred state is adopted

only if the primary preferred state is invalid. A convenient parameter to check the

validity of a selection of primary preferred state is the dislocation spacing. If the

calculated spacing of the primary dislocations is significantly larger than the Burgers

vectors, the coherent patches between misfit dislocations will be so large that the
dislocation description is physically meaningful and a primary preferred state should

be realized. Otherwise, a secondary preferred state would be favored. A secondary

preferred state is more complicated than a primary one, because its structure for a

given system varies with the OR and IO. The particular choice of CSL to be taken as

a reference state remains a challenging problem, as in the case of high angle (vicinal)

grain boundaries. A high planar density of coincident sites has been recognized

important for grain boundaries [53,54], providing useful insights for the heterophase

interfaces. The construction of a CCSL in the heterophase systems has been guided
mainly by experimental observations [41,42,45]. The ambiguity in the selection of the

preferred state is greatly reduced when the construction of a 2D CCSL is guided by

the observed habit plane.

In the following analysis, the structure in any singular interface is presumed to

sustain a preferred state. Periodic structures in the singular interfaces containing

dislocations will be assessed mainly in terms of misfit dislocations. Because of

the restriction of the Burgers vectors, interfaces that contain periodic (in average
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spacing) dislocations are limited. The major concern in the next section is to define

the interface containing periodic misfit dislocations. The singular interfaces free from

any dislocations are more special and their identification can be included as special

cases in the subsequent modeling.
3.3. Singular periodic dislocation structures

A dislocation structure is considered periodic, if each dislocation free area plus the

surrounding dislocations of one, two or three sets characterized by the Burgers

vectors (the dislocation cell) can be repeated side by side over an unlimited area of an

interface of a unique orientation. The distances between the adjacent dislocations

may not be precisely identical everywhere, but they are all close to an average value.

Only when the lattice constants are specially related can the dislocation spacing be

precisely identical everywhere. This can be seen from Fig. 1.
In the examples in Fig. 1, the long-range misfit strain in the interface is accom-

modated completely by the misfit dislocations. In practice, this condition may not be

truly satisfied. However, to characterize a general interface that contains a singular

periodic structure, we must assume that the interface is free of long-range strain.

Otherwise, any interface might contain a singular periodic structure, leaving some

part of the misfit strain to be accommodated elastically. This assumption is rea-

sonable for precipitates whose sizes are significantly larger than the dislocation

spacing. We will proceed with this assumption in the following analysis, leaving the
possible residual long-range strain to be discussed in Section 5.4.

With this assumption, periodic dislocation structures can only exist in interfaces

of certain orientations. A tilt grain boundary is taken to illustrate this point. In Fig. 2

two lattices have been rotated with respect to each other and superimposed, with the

positions of edge-on interfaces being represented by lines a–a and b–b. 6 In this

simple case, there is no misfit along the rotation axis, and the overall misfit strain lies

in the plane of the figure. A maximum of three Burgers vectors, lying in the plane

normal to the rotation axis, is allowed at any interface in this system. Any edge-on
interface (normal to the plane of paper) will contain one, two or even three sets of

parallel dislocations. For an interface to contain one set of periodic dislocations, it

must contain a special vector along which the relative displacement between the two

lattices must lie exactly parallel to a Burgers vector. This vector has a specific ori-

entation, such as the one parallel to interface a–a (forming a symmetric tilt grain

boundary) in Fig. 2.

Consider next an interface deviated from the above condition, for example the

interface indicated by b–b (forming an asymmetric tilt grain boundary) in Fig. 2.
Though the misfit in interface b–b is still a 1D strain, the relative displacement along

the vector parallel to the interface b–b is not in the direction of an amenable Burgers

vector. While the same set of dislocations as in interface a–a might be the only misfit
6 The O-lattice structure in this figure will be explained in Section 3.1. Once the interface is defined, only

one lattice remains in each different side of the boundary.
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dislocations present in a certain area, a second set of dislocations of another Burgers

vector must be present in order for interface b–b to be free of any long-range strain.

The elastic strain in interface b–b will extend over a distance defined by the spacing

of the dislocations in the second set. This medium-range strain may produce a sig-

nificant contribution to the increase of the structural component of the interfacial

energy, as calculated for the simple case of a small angle boundary in a cubic lattice
with a rotation axis around ½001� given in [59,61]. Due to the energy gradient, vicinal

interface b–b is subject to a torque (as indicated by the pair of arrows) which tends to

rotate the local interface to orientation of the singular interface a–a, resulting in a

stepped boundary consisting of facets parallel to a–a.
The above analysis can be extended to heterophase systems, in either a primary or

secondary preferred state. A general heterophase system usually exhibits 3D misfit,

i.e. the vectors of misfit displacement must be expressed in 3D. 7 Then, the interfacial

misfit is in 2D, and at least two sets of dislocations will be present in any interface.
For an interface to contain such a periodic dislocation structure, at least two inde-

pendent special vectors, (the principal O-lattice vectors, as will be explained later),

must be available. The relative displacement along each of these vectors should be

completely accommodated by a single set of dislocations. Since the selection of the

Burgers vectors of the dislocations is finite and discrete, an interface can fulfill the

above condition only when it has a particular and discrete orientation.

One must recognize that only in a system of 3D misfit, periodicity of the dislo-

cations is the necessary and sufficient condition for an interface to be singular with
respect to the IO. If the misfit strain field is 1D or 2D, periodicity of the dislocations

is a necessary but not a sufficient condition. In the example of 2D misfit in Fig. 2,

while a singular interface contains a single set of parallel dislocations, the periodic

characteristic will be maintained as the interface alters its orientation as long as the

interface is inclined to the rotation axis (Such an interface contains a network of

three sets of dislocations). Whether a periodic dislocation structure is singular with

respect to the orientation of the interface can be distinguished according to the misfit

strain field: a structure consisting of a network of periodic dislocations is singular
only when the misfit strain field is 3D; a structure consisting of one set of periodic

dislocations is singular only when the misfit strain field is 2D; a structure of fully

coherent (zero set of dislocations) is singular (and only occurs) when the misfit strain

field is 1D. While the dislocation structure varies with dimensions of the misfit strain

field, a singular periodicity is often possible for an arbitrary OR. The above con-

dition is general for interfaces in either primary or secondary preferred state.

However, some periodic structures may become singular with respect to the IO when

the atomic structures in the interfaces are also taken into consideration.
7 In contrast to 3D misfit, 2D misfit means that the displacement vectors are coplanar, which occurs

when the misfit strain is an invariant line strain; 1D misfit means that all displacement vectors lie in one

direction, which occurs when the misfit strain is an invariant plane strain.
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Fig. 2. An illustration of the distribution of lattice misfit in two edge-on interfaces, indicated by a–a and

b–b. In the superimposed pattern of the rotated two lattices, the periodic positions of best matching define

a 2D O-point lattice. See text for the detail.
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3.4. Singularities described by optimum conditions for interfacial structures

To restrict the OR, at least one other constraint must be applied in addition to the

condition of a singular periodic dislocation structure. Such a constraint imposes a
condition that can be fulfilled in a discrete interface only when the two lattices are

related by a specially defined OR. Thus, the interfacial structure is also singular with

respect to the variation of the OR. A well-known example is the fully coherent

{1 0 0} habit plane between h00 and the matrix in an Al–Cu alloy, which is generally

regarded to have a very low interfacial energy, as documented in many textbooks

(e.g. [11]). Any deviation from either the particular OR or IO will destroy the defect-

free singular structure. However, a defect-free structure is possible only when the

lattice constants of the related phases are restricted to discrete values. It is also
possible in a homophase system, where a vicinal interface, according to the notation

of Balluffi and Sutton, ‘‘consists of the singular interface at the local minimum with a

superimposed array of discrete line defects, which may be dislocations or pure steps’’

[50]. The message from the special systems suggests that a singular interface should

be characterized by elimination of linear defects. In a general heterophase system,

complete elimination of linear defects is in conflict with the condition of no long-

range strain. However, the evidence from a broad range of precipitation systems

suggests that elimination of certain set(s) of linear defects is possible at discrete ORs,
and should represent singularity with respect to the OR.

Guided by experimental observations, we have summarized three optimum con-

ditions for the OR, covering either rational or irrational interfaces of small or large

misfit. The linear defects considered in the conditions include misfit dislocations and

steps. A misfit dislocation is characterized by a discontinuity of one lattice (crystal
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lattice or CSL/DSCL) with respect to the correlated lattice across the interface by a

well-defined primary or secondary Burgers vector associated with the core of the

defect (Fig. 1). Hirth et al. [71] used the term of ‘‘disconnection’’ to describe steps

with dislocation characteristic. In the present description an interfacial step, either

associated with a local displacement (or effective Burgers vector) or not, is identified

by its topographic discontinuity (discontinuity of flat areas or terraces) of the
interface at the atomic scale. When a singular interface contains steps, as the intrinsic

linear defects, it is macroscopically flat with a unique orientation. 8

The first optimum condition requires the complete elimination of interfacial steps,

with respect to planes containing dense lattice points. This condition is analogous to

a criterion requiring the minimization of broken bonds in a surface of low energy, i.e.

it requires the minimization of bonds crossing the interface. The important role of

low index crystal planes in the development of singular interfaces has been noted in

previous studies [8,49,50,52,54]. Singular interfaces in different systems have been
found to be those with the largest hdi value (or equivalently with densest lattice

points), where hdi is the interplanar spacing of the planes parallel to the boundary

[8,50]. As frequently noted in experimental studies, close-packed crystal planes often

serve as the habit plane, particularly when the chemical component of the interfacial

energy has a strong influence (also see Table 5). Interfacial steps in crystalline

interfaces are usually associated with localized distortions [55]. In a system consisting

of crystal(s) with covalent or ionic bonds, steps may also introduce bonds of high

energy, e.g. due to wrong atom pairs, as often occurs when a ceramic phase is in-
volved. Whether this condition is satisfied or not can often be determined simply

from parallelism of the interface plane with respect to low index planes of the

bounding crystals, or to planes of low surface energy of the crystal(s).

The first optimum condition should readily be extended to systems in a secondary

preferred state. This condition should be particularly favored, because the steps are

typical linear defects in the case of a secondary preferred state. However, these

systems are more complicated for the following reasons. First, the planar interface

should be identified with respect to the plane containing a dense array of CCSL
points, rather than simply to planes containing dense lattice points in either crystal.

This plane may be parallel to a rational crystal plane containing dense regular atomic

steps, but these atomic steps may become part of periodic atomic structural units and

lose their identity with respect to the crystal lattice. Second, if the interface plane

contains secondary misfit strain, the application of the above condition is subject to

the requirement of periodic dislocation structure. In the primary preferred state, a

dislocation structure with the amenable Burgers vectors can often be realized when

the interface contains no interfacial steps, because in this case the low index interface
plane usually contains the Burgers vectors that define the dislocations necessary for
8 Distinction should be made between these intrinsic steps within a singular interface and the steps

connecting the singular interfaces, either containing intrinsic steps or not, as the terrace planes. In the

latter case, the step spacing is irregular and the step height is usually large compared with the atomic

distance.
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accommodating the misfit. However, this may not be the situation for a system in a

secondary preferred state, as planes containing dense CCSL points may not be

parallel to the planes containing the small CDSCL vectors that serve as Burgers

vectors. Then, a stepped structure described by the third optimum condition may

prevail, provided that the broken bonds associated with the step risers do not cause a

significant rise of the chemical component of the interfacial energy.
The second optimum condition requires the complete elimination of the dislo-

cations in one direction, i.e. the spacing of a set of dislocations should reach infinity.

The misfit strain field is characterized by an invariant line. This condition is possible

in a limited number of systems when the two phases corresponding to this condition

are related by special ORs. The invariant line strain has been used as a criterion for

understanding ORs by many researchers [16,17,23,72–74]. In fcc/bcc systems the

cusps in the curves representing the variation of the interfacial energy are associated

with an invariant line condition [75]. The success of the invariant line criterion is
found in systems in the primary preferred state. It is implicitly assumed that the

energy of the misfit dislocations provides a major contribution to the structural

component of the interfacial energy for an interface in the primary preferred state.

However, caution must be exercised if one is to apply this optimum condition to

systems in secondary preferred states. It has been concluded by Goodhew [52] that

‘‘the energy of the special (e.g., CSL) boundary is generally a larger component of the

total than that contained in the secondary dislocation arrays’’. This conclusion from

homophase systems may be extended to heterophase systems. The change of the OR
and IO to meet the invariant line strain criterion may alter the atomic structure in

subtle ways in the regions between the dislocations. Formation of an invariant line is

often at the expense of increasing atomic steps. While the atomic steps do not usually

affect conservation of the primary preferred state in the region between the disloca-

tions, they will cause discontinuity of secondary preferred state. Hence, a secondary

invariant line crossing steps may not be preferred, as noticed in recent investigation of

cementite/austenite system [45]. On the other hand, as explained later, the distinction

between the steps crossed by a secondary invariant line and steps associated with
secondary dislocations specified in the following condition is not substantial.

The third optimum condition requires a one-to-one coincidence of steps and

secondary misfit dislocations, instead of eliminating the steps or dislocations. For the

convenience of discussion, such a dislocation and step pair is denoted as a d-step.

Interfacial steps carrying dislocation characteristic have been studied in detail for

grain boundaries associated with the CSL/DSCL model [39,76,77]. If the step height

ðhÞ is not equal to the spacing of the (C)CSL planes (dCCSL), the step must be

associated with a displacement. The displacement must be in units of a lattice vector
in the (C)DSCL in order for the structure in the plane of the (C)CSL to be fully

maintained in different terrace planes [39,76]. The role of such a d-step is twofold: to

preserve repetition of a 2D CCSL pattern in the terraces and to accommodate the

misfit in the interface with the amenable secondary Burgers vector. It is useful to

recollect at this point the energetic argument proposed by van der Merwe et al. in

favor of the structural ledges [78,79]. Though their argument was developed for the
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systems in the primary preferred state, it is likely that preference of a d-step structure

could be explained by the same reason, because cancellation of the misfit in the

terrace planes by the d-steps is similar to the cancellation of the misfit by the ‘‘pattern

advance’’ associated with the structural ledges. However, because the structure in an

interface in a secondary preferred state is more complicated, validation of this

hypothesis would require quantitative justification.
The following argument for preference of d-steps is given on the basis of misfit

analysis. While secondary misfit dislocations are often the necessary defects in a

long-range strain free interface as an ideal 2D CSL is not allowed by the lattice

constants, the steps are not the necessary defects since an interface is free to lie

parallel to low index planes. Stepped interfaces are preferred when the small CDSCL

vectors, as theoretical candidates for the Burgers vectors of the secondary disloca-

tions, are not available in the terrace plane containing dense CCSL points. If the

interface is parallel to such a CCSL plane, the secondary misfit in the plane would be
accommodated by the dislocations with rather large Burgers vector(s), limited by the

inplane CDSCL vectors. In this case, a structure consisting of terraces parallel to the

plane of dense CCSL points and steps associated with a smaller Burgers vector may

be favored, because the decrease of the Burgers vector by a discrete value may result

in an abrupt reduction of the maximum secondary misfit distortion in the interface.

This effect is illustrated by an example in Appendix A, showing that the degree of

overall interfacial matching is improved significantly in the stepped interface com-

pared with the step free interface (refer Fig. 15d). A d-step structure may occur when
the CCSL/CDSCL structure carries the following two types of features. In the first

type, the plane containing dense CCSL points is not parallel to the plane containing

small CDSCL vectors (refer Fig. 8a). In the second type, the plane containing small

CDSCL vectors is parallel to the plane containing dense points in the CCSL, but the

parallel planes do not lie in the same position (refer Fig. 15a). A displacement of such

a small vector in this case will not yield a complete pattern shift in the plane of the

CCSL, but it will shift the CCSL pattern to a sequent plane.

While the first two optimization conditions have been extensively tested against
experimental data, the third condition has not, due to the demanding precision in

either experimental studies or modeling of interfacial structure at the level of inter-

facial steps. However, the terrace planes of the habit planes from several systems have

been found to exhibit a coincidence of steps with dislocations [66,80,81]. Periodic

steps observed from the habit plane between ferrite and cementite in steels are

probably d-steps because of large lattice misfit between the related phases, but they

were regarded as structural ledges accommodating the interfacial misfit [82]. An

interesting case is that the periodic d-steps were introduced to avoid stacking faults in
flat interfaces between ordered phases [81]. An interface that obeys the second opti-

mum condition may also contain steps. Unlike the model that incorporated interfa-

cial steps with dislocations for estimating the interfacial energy [36], the optimum

conditions suggested above have emphasized the singularity of the defects. Usually, a

singular interface should either contain no step or contain steps that they themselves

can accommodate completely the interfacial misfit along a particular direction, along
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Interfacial structures for different combination of the optimum conditions

Dislocation

structures

First condition:

step free interfaces
Stepped interfaces

Primary state Secondary

state
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h ¼ dCCSL Third condition

Second condition
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an invariant line 9 or a quasi-invariant line crossing the d-steps. In terms of the dis-

locations, the singularity simply corresponds to the dislocation spacing of infinite.

Each optimum condition imposes a constraint on the OR since the condition can

be realized only when the two lattices are oriented in a unique way. Any interface

that is singular with respect to both the IO and OR must satisfy at least one of the

three optimum conditions. Such a singular interface can either be rational or irra-

tional in its orientation, depending on which optimum condition is active. For those

systems in the appropriate preferred state, each optimum condition might be inde-
pendently realized. When allowed by the lattice constants, two or more conditions

can be satisfied in a single interface. The possible combinations of the optimum

conditions in addition to the single optimum condition cases lead to a finite set of

singular structures, which are listed in Table 1. In this table, each type of singular

interfacial structure, denoted by an alphabetical letter, satisfies at least one optimum

condition, plus the condition of dislocation periodicity. To distinguish the structures

in the different preferred states, primary and secondary preferred states are denoted

by subscripts I and II, respectively. Note that the second optimum condition can be
applied twice, in different directions, leading to a dislocation free interface. For

example, an interface identified by AI, or simply an AI interface, meets the first and

second (in more than one direction) optimum conditions. It contains neither dislo-

cations nor steps. So far, there is no evidence to show that the third optimum

condition is satisfied in different directions. Thus, this choice is not included in the

table. The optimum structures are illustrated schematically in Fig. 3, in which fine

solid lines and thick dashed lines represent dislocations and interfacial steps,

respectively. The superposition of solid and dashed lines indicates coincidence of the
cores of the dislocations and the step risers in the structures. 10
9 If the invariant line is parallel to a low index direction, though it is a rare case, the singular interface

that obeys the secondary optimum condition may contain steps so that the interface can contain periodic

dislocations.
10 The difference between BII and FII or between DII and GII interfaces may not be substantial, since, as

discussed in Appendix A, the 2D CCSL representing the preferred state will be discontinuous at any steps,

and the displacement associated with the steps will cancel the secondary misfit in the terrace planes,

whether the steps are described to be associated with secondary dislocations or not.



Fig. 3. Characteristic structures in the singular interfaces, whose notations are listed in Table 1. The

primary and secondary preferred states are shown by an even and gray background and by a background

of gray dots respectively. Misfit dislocations and interfacial steps are represented respectively by solid and

dashed lines.
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The singular interfacial structures listed in Table 1 are general, in the sense that

these structures may be present in any crystalline material, though the completeness

of this set of structures requires further testing. The interfacial structures in systems

containing complicated crystal phases may be developed through a dislocation

reaction or by decomposition from one of the structures in Table 1, but such a

reaction will not alter the crystallography of the singular interfaces. Satisfaction of
one optimum condition alone does not impose a full constraint on the OR, but it

restricts two degrees of freedom in the OR (This will be explained in Section 5.2).

Five out of 12 structures in the table (i.e. EI, EII, DI, DII, GII) satisfy one optimum

condition only once. They leave one undefined degree of freedom in the OR. The

remaining structures are singular to any variation in the 5D BGP space. These

structures, in addition to those consisting of no steps, or d-steps must be singular

with respect to the IO, as they can form only in interfaces of discrete orientations.

The remaining structures, DI and DII, are not singular only if they are in a system of
an invariant plane strain. The invariant plane strain is rare, and once the strain is

realized, any ambiguity about the singular structure is unlikely to be encountered

since the dislocation free habit plane would be the dominant face of the precipitate.

Therefore, if the structure DI or DII is observed in a broad interface, this structure

must be singular with respect to the IO.
4. Determination of singular interfaces in framework of model lattices

Given a general precipitation system, what interfaces in the 5D BGP space will

contain singular structures? This question addresses the intimate connection between

the microscopic and macroscopic descriptions of an interface. An important clue to
the answer to this general question can be deduced from the common characteristic

of all singular interfaces, i.e. their singular periodicity. Various model lattices,

including the O-lattices, the CSL and DSCL (with or without constraint), have

proven particularly helpful to the investigation of periodicity of fit/misfit between

two lattices of crystalline phases [37]. Detailed descriptions of these model lattices

can be found from the well-known books by Bollmann [37,58]. The following review

focuses on the use of the model lattices for identifying interfaces with singular

periodic structures. In addition to the expression of the model lattices in direct space,
their expression in reciprocal space will be emphasized. This approach helps to

bridge the descriptions of singular interfaces in different scales. In contrast to

common applications, which usually input the macroscopic description of an

interface (i.e. the OR and IO) and obtain an output of the microscopic description

(e.g. the interfacial structure) from a calculation with a model lattice, an inverse

route has been employed here, i.e. the output of the analysis is the characteristic OR

and IO that permit a structure with singular periodicity to be realized.

For a valid description of an interfacial structure, it is important to specify the
structural element considered to define the periodicity. The singular structures in

Table 1 may be described by three types of periodic elements: primary dislocations,

atomic structural units, or secondary dislocations. Periodicity of dislocations can be
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most conveniently described in the framework of a primary or secondary O-lattice

[37,58]. If the periodicity is described in terms of atomic structural units, the CSL,

instead of the O-lattice, must be adopted. In the following sections we will describe

different singular interfaces separately with appropriate model lattices.

4.1. Primary O-lattice and planes containing periodic dislocation structures

The primary O-lattice is the model lattice for the description of the primary

dislocations, but the prefix ‘‘primary’’ is often omitted, as the Burgers vectors of the

dislocations are simply those for the allowed dislocations in either phase. The pri-
mary O-lattice applies to a system in which the primary preferred (fully coherent)

state is maintained between the dislocations. The lattice misfit in this system must be

small, so that the spacing of the primary dislocations is large enough to permit

validity of the model.

Let us consider a system of two lattices (a and b) related by an arbitrary OR. As

proposed by Bollmann [37], an O-lattice is constructed by letting lattices a and b to

interpenetrate according to the given OR. The pattern in Fig. 2 is a simple example

of a 2D O-lattice formed by superimposing a pair of identical lattices that are rotated
relatively to one another. The periodicity of this fit/misfit pattern is described by the

O-lattice, with O-points, indicated by open circles, located at the centers of good fit.

The regions of poor lattice match form a cell structure, with O-cell walls located at

the positions where the lattice match is the poorest, as indicated by the dashed lines

in Fig. 2. In 3D, the O-lattice element can be a point, a line or a plane. Each element

defines the center of O-cell, a volume in which the lattice fit varies continuously from

good at the center to poor at the borders between the adjacent cells. These borders

are called O-cell walls. Regardless of the nature of the O-lattice elements, the O-cell
walls are always periodic planes defining the locations of poor lattice match.

According to the suggestion by Bollmann, the lines where O-cell walls are intercepted

by an interface represent the configurations of the possible misfit dislocations after

relaxation to a long-range strain free state [37].

However, it should be emphasized that the representation of the dislocations by

the intersections between an interface and the O-cell walls is valid only if the area

enclosed by the intersection lines becomes a coherent region upon relaxation. Take

the simple case shown in Fig. 2 as an example. In this figure, there is an O-point
between each pair of adjacent intersection points in interface a–a. Upon relaxation,

one would expect that these O-points become the centers of the coherent patches

where the primary preferred state is maintained. The relaxation will result in the

formation of a periodic array of dislocations (perpendicular to the plane of the

paper) at the locations where the patches of coherent regions meet. Consequently,

the cores of the dislocation lines will most likely be located near the mathematical

intersections of the O-cell walls and the interface a–a, as described by the well-ac-

cepted model for a small angle symmetric tilt grain boundary. In contrast, not all
mathematical intersection points between the O-cell walls with an interface can be-

come dislocations. For example, it is questionable whether those intersections de-

noted by ‘‘?’’ in interface b–b will become dislocations, as the regions between the
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dislocations may not become fully coherent upon relaxation. However, regardless of

its precise relaxed structure, interface b–b must contain more than one set of dis-

locations, described by different Burgers vectors.

Our present concern is the interfaces containing simple periodic structure, as fa-

vored by nature. For an interface to contain regular patches of good matching

separated by periodic dislocations, the interface must intersect a set of parallel O-cell
walls and pass all O-elements between walls. Formally, the interface must contain

the vector connecting the O-elements separated by a single O-cell wall. Such a vector,

referred to the principal O-lattice vector, can be readily identified in a graphical

presentation of an O-lattice, as identified by open circles in Fig. 2. The intimate

relationship between a principal O-lattice vector and the Burgers vector of the dis-

location is that ‘‘the relative displacement between lattices a and b connected by a

principal O-lattice vector is a Burgers vector.’’ This important relationship lays the

basis for numerical expression of the O-lattice.
For generality and mathematical simplicity, let us first consider a system with a

3D misfit strain field. The locations of all points from lattices a and b are conve-

niently described by vectors, xa and xb, in lattices a and b respectively, with a point

from each lattice located at the origin. The vectors are related by a matrix operation,

A, conventionally called a transformation strain, i.e. 11 [37,58]
11 L

bold fa

orthog
xb ¼ Axa: ð1Þ
Since the strain is defined with respect to the primary preferred state, A is also re-

ferred to as the primary misfit strain, in contrast to the secondary misfit strain dis-

cussed later. The primary misfit strain is determined according to the nearest

neighbor principle applied to the shortest lattice vectors (or other pairs within the

central O-cell) [37]. The displacement field of the phase transformation is defined by

matrix T, given by
T ¼ I� A�1; ð2Þ
where I is a unit matrix. The operation of the displacement matrix T on any vector

from lattice b yields the displacement with respect to its associated vector in lattice a.
The rank of the matrix T, rankðTÞ, defines the dimension of the misfit strain field

(also in reciprocal space). Given a 3D misfit strain, rankðTÞ ¼ 3 and the O-lattice is

an O-point lattice. A principal O-lattice vector, xO
i , is defined by [37]
TxO
i ¼ bLi ; ð3Þ
where bLi is a Burgers vector defined in lattice a, which is conventionally called the

reference lattice. The subscript ‘i’ is used to specify the correspondence: the relative
displacement associated with xO

i (in lattice b) is bLi . This relationship is illustrated in

Fig. 4, where three inplane bLi ’s and the related xO
i ’s are specified. A 3D O-lattice
ower-case letters in bold face type are used to represent column vectors, while upper-case letters in

ce type are used to represent 3· 3 matrixes. All vectors in the matrix calculations are defined in

onal coordinates.



Fig. 4. A principal primary O-lattice plane (formed by superimposing an fcc {1 1 1} plane with a bcc

{1 1 0} plane according to the N–W OR) in which the three basis O-lattice vectors are specified as vectors

connecting the O-points at the centres of adjacent O-cells; possible locations of the periodic disloca-

tions are indicated by dashed lines, as defined by the intersection of the O-cell walls with the interface

plane.
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point lattice is completely defined by translations of three non-coplanar xO
i vectors,

associated with non-coplanar bLi ’s. While the relative displacement is a linear func-

tion of the point position with respect to the origin, the lattice misfit varies peri-

odically from one O-cell to the next. Any O-point always defines the position where

the misfit displacement is the smallest.

The O-cell wall (as well as the dislocations inherited from the O-cell walls)

dividing the xO
i vector is associated with the same Burgers vector. The set of O-cell

walls can be represented by a reciprocal vector defined by [83]
cOi ¼ T0b�i ; ð4aÞ
where
b�i ¼ bLi =jbLi j
2 ð4bÞ
defines a reciprocal Burgers vector, which represents a set of faces (normal to bLi ) of

the Wigner–Seitz cells of the reference lattice. The symbol prime ‘‘0’’ denotes a

transpose operation on the associated matrix or vector. Usually, cOi is not parallel to

xO
i . A simple way to examine whether a set of periodic dislocations will be present in

a particular interface is to examine whether this interface contains the xO
i vector

corresponding to bLi . Given the normal, n (a unit vector), of an interface containing
xO
i , the direction of the periodic dislocations is given by [83]
ni ¼ cOi � n ð5aÞ
and the dislocation spacing is
di-dis ¼ 1=jnij: ð5bÞ
For rankðTÞ ¼ 3, a singular interface must contain two or three xO
i ’s corresponding

to different bLi ’s. This interface will contain a network (two or three sets) of periodic
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dislocations defined by these Burgers vectors, e.g. EI in Table 1. The 2D O-lattice in

Fig. 4 can be regarded as an example of such an interface. 12 The dashed lines in Fig.

4, defined by the intersections of the O-cell walls with the interface plane, indicate

possible locations of the periodic dislocations. Such a special O-lattice plane, con-

taining at least two xO
i has been defined as a primary O-lattice plane [83]. To avoid

confusion between the general planes of the primary O-lattice and the primary O-
lattice planes defined above, we re-define this special group of O-lattice planes as

principal primary (or principal) O-lattice planes and extend the definitions for the

other types of the O-lattice elements as follows.

When rankðTÞ < 3, the definitions in Eqs. (1)–(5) remain valid, but the existence

of an O-lattice depends on the solution of Eq. (3). A strictly periodic distribution of

the O-elements in 3D (3D O-lattice) in this case is limited by the lattice constants,

and is seldom fulfilled in reality. On the other hand, a plane of O-lines or a single O-

plane is often possible. Since a fit/misfit pattern normal to a singular interface does
not affect the description of the interface, for practical applications it is convenient to

emphasize the plane of the O-element(s) rather than the 3D O-lattice. While the

principal primary O-lattice plane for rankðTÞ ¼ 3 is the plane containing the periodic

O-points, the principal primary O-lattice plane for rankðTÞ ¼ 2 is one containing the

periodic O-lines (or a single set of periodic dislocations, i.e. CI or DI). In case of

rankðTÞ ¼ 1, we define the principal primary O-lattice plane to be parallel to the O-

plane element. A single O-plane element, or the invariant plane in general, is suffi-

cient to define a dislocation-free singular interface (i.e. AI or BI). While the singular
interface in this special case can be determined from different methods without

reference to the O-lattice concept, it is included here for completeness.

In this context, all candidates for the singular interfaces in primary preferred state,

containing either periodic or no dislocations, should be chosen from the principal pri-

mary O-lattice planes. An interface so defined is always singular with respect to the

IO, because any principal primary O-lattice plane is always a discrete plane. The

periodic structure in a principal primary O-lattice plane is guaranteed by the inplane

periodic O-elements alternating with the intersected O-cell walls, which may be
inherited as the dislocations. Whether the calculated dislocation structure can be

realized in an interface parallel to a principal O-lattice plane, containing the

appropriate O-elements, depends on whether the regions centered at the O-lattice

elements can become coherent after relaxation.
4.2. Principal primary Dg vectors (DgP-I)

Based on the O-lattice in direct space considered above, a quantitative description

of a singular interface containing two sets of dislocations can be obtained by the

cross product of the two xO
i ’s corresponding to different bLi ’s. The plane containing
12 The 2D O-lattice and O-cell structure in Fig. 4 has been plotted from a program, written by Min

Zhang according to Eqs. (3)–(5) available from http://www.mse.tsinghua.edu.cn/faculty/zhangwzh/english/

index.htm.

http://www.mse.tsinghua.edu.cn/faculty/zhangwzh/english/index.htm
http://www.mse.tsinghua.edu.cn/faculty/zhangwzh/english/index.htm
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one set of parallel dislocations (or O-lines) can also be determined by two xO
i ’s (or

equivalently one xO
i plus the invariant line, since all xO

i ’s must be coplanar with the

invariant line). In contrast to the O-point lattice, both xO
i ’s are solved corresponding

to the same bLi (since multiple solutions exist for Eq. (3) in this case). However, as for

other periodic structures, it is much simpler to define the principal O-lattice planes

through a formulation in reciprocal space [83]. Moreover, the reciprocal vectors for
the O-lattices are readily measured using conventional transmission electron

microscopy (TEM). This allows one to identify candidates for singular interfaces in

reciprocal space, where the experimental measurement of the macroscopic parame-

ters of interfaces or the precipitation crystallography is conventionally recorded.

In reciprocal space, vectors in different lattices, ga and gb, are related by the same

transformation strain in a different way [84]:
13 I

matchi

this ne
gb ¼ ðA�1Þ0ga: ð6Þ
The displacement between a pair of correlated reciprocal vectors is
Dg0I ¼ g0aðI� A�1Þ ¼ g0aT; ð7aÞ
where the subscript ‘I’ is used to distinguish a primary Dg that only connects ga and

gb related by a primary misfit strain from any Dg that is otherwise related. Provided

that rankðTÞ ¼ 3, hence T is invertible and the O-lattice is a point lattice. Rewriting

Eq. (7a) as
ðT�1Þ0DgI ¼ ga; ð7bÞ
one immediately sees that Eq. (7b) defines an O-lattice transformation in reciprocal

space corresponding to Eq. (3) in direct space. Therefore, the displacement vector

DgI defined by Eq. (7a) is a reciprocal vector of the primary O-lattice [83].

A set of periodic principal primary O-lattice planes is defined by a principal

primary Dg vector, denoted by DgP-I, which is associated with gP-a by
DgP-I ¼ T0gP-a ¼ gP-a � gP-b ð8Þ
with gP-a representing a set of principal planes containing at least two Burgers vectors

in lattice a, while gP-b is the vector in lattice b, correlated to gP-a by Eq. (6). The

vector of DgP-I is measurable, since gP-a and gP-b can often be easily recognized from

low index spots in an appropriate superimposed diffraction pattern.

A unique character of the interface normal to DgP-I is that the planes gP-a and gP-b
should be in perfect registry at the interface. This property can be seen from the

construction of Moir�e fringes formed by interference of the planes defined by gP-a
and gP-b in Fig. 5a. The Moir�e planes in this figure are normal to the vector DgP-I, and
their positions are defined by the locations where the two sets of planes intersect, 13

as indicated by the dashed and dotted lines in the figure. Based on this definition, the
n an earlier publication [58], positions of the Moir�e planes were defined at the regions of the worst

ng, identical to the dark Moir�e fringes. For the convenience of applications, we redefine them, and

w definition is consistent with the definition by Bollmann [58].
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Fig. 5. (a) Relationship between Moir�e fringes, principal primary O-lattice planes, and a DgP-I vector and
(b) registry of planes gP-a and gP-b at the interface lying along a principal primary O-lattice plane normal to

DgP-I.
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related planes should meet edge-to-edge in each Moir�e plane. This above property of

the Moir�e planes is completely general, without referring to the concept of the O-

lattice. For a Moir�e plane to be parallel to an O-lattice plane, the Dg vector normal

to the Moir�e plane must connect two g’s that are related by Eq. (6), in which a one-

to-one correspondence is implied. The Moir�e planes formed from intersection of two

sets of principal (usually low index) planes of crystal lattices, gP-a and gP-b, are often

the most important in the study of interfaces. We further define these Moir�e planes

as principal Moir�e plane, but, for general applications, we do not require the cor-
responding gP-a and gP-b to be related by any particular strain. In systems where the
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lattice misfit is larger, the principal Moir�e planes may be formed by planes mgP-a and
ngP-b (where m and n are integers). Thus, though the difference between gP-a and gP-b
may be large, DgðmgP-a � ngP-bÞ to define the principal Moir�e planes may be small

and easy to be recognized in a diffraction pattern. Then, one finds fractional, rather

than one-to-one, matching between the planes gP-a and gP-b in the principal Moir�e
planes. On the other hand, when the lattice misfit is small, the principal primary O-
lattice planes normal to DgP-I must be identical to the principal Moir�e planes formed

by the related planes gP-a and gP-b. After the removal of the different sets of planes

from either side of an interface lying along a principal O-lattice plane, the two sets of

related planes are in exact registry, as seen in Fig. 5b. Since Moir�e fringes are fre-

quently visible from TEM image, the association of Dg’s with habit planes or facets

can be tested by the TEM studies, as already done in several investigations

[21,23,85,86]. The geometric phase technique recently developed by Hytch et al. [87]

is particularly helpful for this purpose.
The displacement associated with a point located in one or more principal Moir�e

planes can be elucidated by the following equations. In case of an O-point lattice, all

xO
i ’s in the plane normal to DgP-I must be associated with the bLi ’s lying in the plane

normal to gP-a. This result can be seen from the following relationship that combines

Eqs. (3) and (8) [88]
Dg0P-Ix
O
i ¼ g0P-aTx

O
i ¼ g0P-ab

L
i ¼ 0: ð9aÞ
If we replace xO
i in Eq. (9a) by a general vector, y, lying in the interface, and replace

bLi by the relative displacement dð¼ TyÞ, then the above equation becomes
Dg0Iy ¼ g0aTy ¼ g0ad ¼ 0: ð9bÞ
Eq. (9b) is completely general, and it indicates that the relative displacement asso-
ciated with any vector in the interface normal to gI must lie in the plane of the related

ga. In deriving the Eq. (9) it is implied that any set of planes from either crystal lattice

must contain one plane that passes through the origin (since a lattice point is located

at the origin), so that any set of Moir�e planes will also contain one that passes

through the origin.

Matching of one pair of planes only ensures elimination of the misfit in 1D, i.e. in

the direction normal to the correlated planes. To eliminate the misfit in 3D, any good

matching point must be located at place where at least three pairs of correlated
planes cross one another. The geometry of an O-element meets the above require-

ment, because it is located at the intersection of at least three sets of principal O-

lattice planes, in the condition that the DgP-I vectors defining O-lattice planes are

associated with no-coplanar gP-a’s or gP-b’s. It is convenient to elucidate the shape

and distribution of the O-lattice elements in terms of the orientations of these three

DgP-I’s. If these DgP-I’s are non-coplanar, which occurs when rankðTÞ ¼ 3, one finds

an O-point element wherever the planes defined by the DgP-I’s meet. If the DgP-I’s are
coplanar, which occurs when rank(T)¼ 2 [73], all principal O-lattice planes must
meet at least at one line (an invariant line) passing through the origin. This line

defines a single O-line element. If, in addition, two of the DgP-I’s are parallel, the

parallel Moir�e planes passing through the origin must overlap. Then, one finds
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periodic O-line elements at the periodic positions wherever the third set of Moir�e
planes intersect in the common Moir�e plane. The Burgers vector of the O-lines must

be contained in both planes that are related to the parallel DgP-I’s. It can be shown

that various sets of other inclined principal Moir�e planes will intersect the interface

at the same periodic positions [89]. In more special cases, if the parallel DgP-I’s are
identical, then the overlapped principal Moir�e planes will become strictly periodic.
The plane containing the parallel O-lines will repeat with the common spacing of the

principal Moir�e planes, resulting in a 3D O-line lattice. Meanwhile, one may also

find one or two more pairs of identical DgP-I’s normal to different planes containing

the periodic O-lines. A more general condition for the existence of the 3D O-line

lattice is that a DgP-I should be zero vector, i.e. its related gP-a or gP-b defines the

invariant line in reciprocal space [73]. This condition ensures that the planes related

by this zero DgP-I vector constantly match with each other, when they are parallel.

Consequently, 3D distributed O-line elements can be defined by the locations where
two sets of the principal Moir�e planes intersect. Each DgP-I defines a plane containing
the O-lines, and this DgP-I can be regarded to be parallel to another DgP-I with infinite

spacing. While the above condition is special, overlap of two principal Moir�e planes
may still be possible in a longer range, with a ‘‘high order’’ periodicity determined by

a ‘‘high order’’ Moir�e pattern formed between these parallel Moir�e planes. Finally, if
all DgP-I’s are parallel, which occurs when rankðTÞ ¼ 1 [90], all principal Moir�e
planes at least share a common plane (an invariant plane) passing through the origin,

as a single O-plane element. The plane normal to all DgI’s must contain no dislo-
cations, as it is impossible to define any non-zero vector lying in all gP-a planes re-

quired by Eq. (9b). Again, the existence of a periodic O-plane lattice requires the

parallel DgP-I’s be identical.

An example of a DI interface from an fcc/bcc system is given in Fig. 6b, to show

the matching condition in an interface lying in the position of two principal Moir�e
planes. (Third parallel principal Moir�e plane in the figure is linearly dependent of the
fcc0 0 2

-1 0 1

1 -1 1

-1 1 0

fcc

bcc

bcc

bcc

fcc

(a) (b)

O

Fig. 6. (a) Superimposed planes of reciprocal points from the parallel zone axes, [1 1 0]f and [1 1 1]b. The

OR is uniquely defined by a set of parallel DgP-I’s (identified by the arrows), connecting adjacent low index

reciprocal points from the two lattices and (b) matching of correlated low index planes in the interface

normal to the parallel DgP-I’s.
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other two.) A superimposed diffraction pattern from the zone axes of ½110�f and

½111�b has been plotted in Fig. 6a, in which the lattice constants have been selected to

exaggerate each DgP-I. (A real diffraction pattern similar to this example can be found

in Fig. 12.) The two phases are related by an OR that meets the O-line condition, so

that three DgP-I’s are parallel with one another. These are DgP-I1 ¼ ð1�11Þf �
ð�101Þb, DgP-I2 ¼ ð002Þf � ð�110Þb, DgP-I3 ¼ ð�111Þf � ð01�1Þb. According to
the relationship in Fig. 5, all planes (from different lattices) related by the parallel

DgI’s should be in registry at the interface. In Fig. 6b, three sets of low index planes

from different lattices fit perfectly at the mathematic interface, indicated by a dashed

and dotted line, normal to the parallel DgP-I’s in Fig. 6a. The term of ‘‘mathematic’’

was used because the actual interface should consist of terraces and steps, as indi-

cated by the thick solid line. The relative displacement in the interface, i.e. the

Burgers vector of the interfacial dislocations, lies in the direction of the parallel zone

axes, ½110�f=½111�b, normal to the plane of the diffraction pattern. This type of
interface has been observed repeatedly using high resolution TEM from Ni–Cr alloys

[91,92].

Unlike the principal O-lattice vectors, which may not be solvable using Eq. (3) for

some Burgers vectors when the rankðTÞ < 3, all DgP-I’s can always be calculated

from Eq. (8). It is convenient in practice to identify the principal O-lattice planes

with DgP-I’s, since a principal O-lattice plane can always be identified from the

DgP-I’s, no matter what form (point, line or plane) an O-element takes, whether or

not this plane periodically repeats in its normal direction. Consequently, any singular

interface in the primary state, being parallel to a principal O-lattice plane, will be

normal to at least one DgP-I. However, whether a single DgP-I will define a singular

interface depends on rank(T). When rankðTÞ ¼ 3, a one-to-one relationship can be

established between a principal O-lattice plane and a gP-I vector. Hence, different

singular interfaces can be defined, each of which is normal to a DgP-I. When

rank(T)¼ 1, all DgP-I’s are in one direction normal to the invariant plane, and hence

any DgP-I defines the singular interface. In the case of rank(T)¼ 2, the singular

interface containing the O-lines will be normal to two (or three) DgP-I’s. In this case,
an interface normal to a single DgP-I cannot contain a dislocation structure with

simple periodicity, given that the interface is free from a long-range strain. On the

other hand, an interface inclined to an invariant element (line or plane), which is not

singular with respect to the IO in terms of the dislocation structure, will not be

normal to any DgI, though a periodic dislocation structure may be present in the

interface if a 3D O-lattice is available.

Table 2 summarizes the relationships between the O-lattice, DgP-I’s and the sin-

gular interfaces, as defined by the principal O-lattice planes, plus the dislocation
structure in the singular interfaces. The DgP-I’s vectors representing the singular

interfaces are readily measured from their associated low index gP-a’s using con-

ventional TEM (e.g. Figs. 6a and 12). Since the plane gP-a containing at least two

Burgers vectors is limited, the total number of DgP-I’s is usually small (e.g. <8).

Therefore, using DgP-I’s to identify singular interfaces can be straightforward and

simple to apply, provided that the interface is in the primary preferred state.

However, if the system is not in the primary preferred state, the singular



Table 2

Descriptions of singular interfaces in the primary preferred state in terms of the primary O-elements and

DgP-I vectors

Rank(T) Solution for Eq. (3) No. of singular

interface

Dislocation set

in the interface

No. of DgP-I ?
a singular

interface
No. of bLi O-element

3 All Periodic points

in 3D

All DgP-I’s 2 or 3 ðEIÞ 1

2 0 One line 0

1 Periodic lines

in 2D

1 1ðCI=DIÞ 2 or 3

2 or 3 Periodic lines

in 3D

2 or 3

1 0 One plane 1 0 ðAI=BIÞ All

1 Periodic planes

in 3D
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interfaces can still be characterized by a group of Dg’s, but the useful Dg’s in this case

might be more complicated to identify. This will be considered in the following

sections.
4.3. CSL/CCSL and their reciprocal vectors

Useful Dg’s for identifying singular interfaces in a secondary preferred state are

often but not always associated with low index ga’s. An important step in the

association of useful Dg’s with the interfacial structures is to classify the Dg’s in terms

of their representation as the principal planes in the different model lattices. 14 We

consider first a simple system in which an ideal CSL can be defined. In contrast to the

O-lattice, the calculation of the CSL is independent of the selection of the lattice
correspondence [58]. A Dg vector, defined by the difference between any pair of ga
and gb, is a lattice vector of the DSCL in reciprocal space [56]. According to the

reciprocity theorem of the CSL and DSCL due to Grimmer [93], any Dg is a re-

ciprocal vector of the CSL (in direct space). The most important Dg’s are those that,
as reciprocal vectors, represent the planes containing relatively high density of CSL

points, since these planes are plausible candidates for singular interfaces, as discussed

in Section 3.1.

Given a CSL, which can be determined either by a graphical method or by cal-
culation [58], a systematic way to identify the dense planes is to construct the

Wigner–Seitz cell in the CSL. As is the case for the Burgers vectors in crystals, the
14 The reciprocity theorem of Grimmer [93] shows that the reciprocal vector of a CSL in direct space is

a vector of DSCL in reciprocal space, and vice versa. To identify the representation of a reciprocal vector,

we adopt the direct space convention, and designate a reciprocal vector by its representation in direct

space.
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vectors bisected by the faces of the Wigner–Seitz cell should comprises the smallest

vectors. A plane that contains at least two vectors from this set will contain a rel-

atively high density of CSL points. Such a plane is termed a principal CSL plane, and

the corresponding reciprocal vector is a principal reciprocal vector of the CSL,

designated as DgP-CSL. Any DgP-CSL is a small vector of the DSCL in reciprocal space

[93]. The group of smallest gP-CSL’s usually defines the most plausible choice for the
singular interfaces, because of the high CSL point density in the interfaces. It should

be noted that there exist identical DgP-CSL’s connecting different pairs of ga and gb,

because they are lattice vectors in the DSCL and will repeat periodically, together

with the unit cell of the CSL in reciprocal space [56]. Therefore, in the case of a 3D

CSL, a dense CSL plane is always normal to a group of differently connected but

identical DgP-CSL’s. Because the CSL must be commensurate with the crystal lattices

[58], one can always find a pair of gP-aCSL and gP-bCSL parallel to a DgP-CSL. In practice

a CSL plane is usually identified by these crystal planes. The linear relationship
between such a crystal vector and different DgP-CSL’s for the same CSL plane will

yield numerous parallel Dg’s of various lengths, which can be identical to or even

larger than the g vectors of either crystal lattice. Therefore, a CSL plane should be

parallel to various Moir�e planes defined by these parallel Dg’s normal to the CSL

plane. When the general property of Moir�e planes is applied (Fig. 5), the planes

defined by a pair of g’s connected by one of the parallel Dg’s must match with each

other at the interface normal to the CSL plane. In addition, all planes whose re-

ciprocal vectors are in coincidence (i.e. their g’s define a CSL point in reciprocal
space) must continuously cross any interface. In terms of these continuous planes or

matching planes, an interface parallel to a principal CSL plane is a plane of good

matching. Numerous planes meet their counterpart at rows of CSL points in the

interface.

Unfortunately, such an ideal CSL is rare for heterophase systems. The lattice

constants in real systems do not often permit an ideal CSL plane to be formed.

However, an appropriate CCSL may be constructed for suggesting a principal CCSL

plane as the reference for the secondary preferred state in a singular interface (refer
Fig. 1d). Vectors related to the CCSL are denoted by the appropriate subscript, e.g.

DgP-CCSL. A construction of the CCSL is essential for identifying DgP-CCSL. It is

convenient to construct the CCSL in reciprocal space, not only because it is

straightforward to determine DgP-CCSL but also because the crystallographic data are

usually recorded in reciprocal space. In general, a pair of ga and gb in close vicinity to

each other can be constrained to become a CCSL point in reciprocal space, so that

the secondary strain is reasonably small. An example of the construction of a CCSL

in reciprocal space for the cementite/austenite system near the T–H OR is given in
Fig. 7. The diffraction pattern in Fig. 7a has been plotted based on the measured data

[94]. However, the reciprocal lattice of cementite in Fig. 7b has been constrained, so

that a set of nearby reciprocal points in Fig. 7a become coincident, as indicated by a

circle around a solid spot. In this hypothetical diffraction pattern, the smallest Dg’s
are �ð�101ÞC=2 or �ð�1�13ÞA=7, where the subscripts ‘C’ and ‘A’ denote the

basis of the cementite and austenite lattices respectively. A further analysis suggested

that the smallest DgP-CCSL in 3D is defined by �ð�101ÞC=4 [45]. The 2D CCSL in the
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plane normal to this vector was adopted as the reference of the secondary preferred

state.

While DgP-CCSL’s are important for defining the useful CCSL plane, the vectors are

not measurable in electron diffraction patterns (where the artificial constraint does

not exist), unlike the measurable gP-CSL’s for the ideal case of CSL. The set of Dg’s
that would be identical to a DgP-CCSL in the constrained state will usually be restored
to vectors having slightly different directions and lengths compared to the original

DgP-CCSL, as can be seen from a comparison of Dg’s in Fig. 7a and b. Though these

restored DgP-CCSL’s can still be identified by their associated g’s (defined in a crystal

basis so that the indexing is independent of constraint), the CCSL plane is practically

identified by gP-aCCSL or gP-bCCSL vector (in their own crystal basis), which is parallel

to the DgP-CCSL in the constrained state. For example, one can identify from Fig. 7b

that the gP-aCCSL or gP-bCCSL parallel to the selected DgP-CCSL is ð�1�13ÞA or

ð10�1ÞC.
The vector gP-aCCSL may or may not be parallel to gP-bCCSL, which depends on

whether the singular interface contains steps. When the singular interface does not

contain steps, gP-aCCSL should be parallel to gP-bCCSL, both normal to the interface. A

small angular deviation between these vectors usually occurs when the corre-

sponding plane of the CCSL serves as the terrace plane of a stepped singular

interface. It results from the difference of the step heights defined in the different

lattices. The angular deviation between them is usually small, arising from the sec-

ondary strain. In the following analysis we assume that at least one plane of the
CCSL can be defined as the preferred state in the majority of the interface area. This

plane normal is defined by either gP-aCCSL or gP-bCCSL.

4.4. Secondary O-lattice and principal secondary Dg vectors (DgP-II)

When the system (lattice parameters) does not permit the formation of a plane of

dense CSL points as the singular interface (AII in Fig. 3), steps or secondary dislo-

cations may be introduced to accommodate the deviation from the secondary pre-
ferred state. Then, a singular interface will consist of periodic steps (BII in Fig. 3)

and/or secondary dislocations (CII � GII in Fig. 3) in addition to the elastically

strained structure of the secondary preferred state. While the determination of the

structure of the steps in an interface of a fixed orientation is simple geometry when

the terrace plane (defined by either gP-aCCSL or gP-bCCSL) and step height are known,

the determination of the structure of the secondary dislocations is more complicated

and will be analyzed below. The O-lattice models can be extended for analysis of the

distribution of the secondary misfit strain [37,58]. The formulas in Sections 4.1 and
4.2 remain applicable, only with the replacement of A and bL for the primary dis-

locations with the secondary misfit strain AII and secondary Burgers vectors bII,

respectively. The vectors in the CCSLa and CCSLb and those in the CDSCLa and

CDSCLb (as illustrated in Fig. 1c) should be related by the same secondary misfit

strain AII, i.e.
xCCSL
b ¼ AIIxCCSL

a ð10aÞ
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and
xCDSCL
b ¼ AIIxCDSCL

a ; ð10bÞ
where xCCSL
a , xCCSL

b , xCDSCL
a and xCDSCL

b define vectors in the CCSLa, CCSLb,

CDSCLa and CDSCLb respectively (refer Section 3.2). It is more convenient to

determine AII according to the relative positions of the points in CCSLa and CCSLb,

either in direct or reciprocal space [45]. If one lattice, e.g. a, is fixed in formation of

the CCSL (Fig. 1d), AII is equivalent to the constraint which brings a set of points in

b into coincidence with the corresponding points in a. An example of determining AII

can be found in a recent calculation of the secondary dislocation structure for the

cementite/austenite system [45]. According to Bollmann [37,58], the Burgers vectors
of the secondary dislocations, bII, should be selected from the lattice vectors of the

DSCL. The candidates for bII can be determined as the vectors bisected by the faces

of the Wigner–Seitz cell of the reference CDSCLa, as these vectors should include the

smallest vectors in the DSCL.

Once bIIi and AII have been determined, the secondary O-lattice, the secondary O-

cell, etc. can be determined in the same way as for the primary preferred state. A

principal vector of the secondary O-lattice, xO-II
i , is defined by [95]
TIIxO-II
i ¼ bIIi ; ð11Þ
where TII ¼ I� AII describes the secondary displacement matrix. The secondary O-

cell walls are defined by
cO-II
i ¼ ðTIIÞ0bII�i ; ð12Þ
where bII�i ¼ bIIi =jbIIi j
2
is a secondary reciprocal Burgers vector. Given an interface

normal n (a unit vector), the direction of the secondary dislocations is
nIIi ¼ cO-II
i � n; ð13aÞ
and the dislocation spacing is
dII
i�dis ¼ 1=jnIIi j: ð13bÞ
A general reciprocal vector of the secondary O-lattice is given by
DgII ¼ ðTIIÞ0gaCDSCL; ð14Þ

where gaCDSCL is a reciprocal vector representing a set of parallel planes in the

CDSCLa.

Following the approach used to define the principal primary O-lattice plane, an

interface containing a periodic secondary dislocation network must be parallel to a
principal secondary O-lattice plane, which must contain at least two xO-II

i ’s. This

secondary O-lattice plane is transformed from a principal CDSCLa plane containing

at least two bIIi ’s. If gP-aCDSCL is designated as the reciprocal vector that represents a

set of (parallel) principal CDSCLa planes, the related principal secondary O-lattice

plane is defined by
DgP-II ¼ ðTIIÞ0gP-aCDSCL ð15Þ
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or
DgP-II ¼ gP-aCDSCL � gP-bCDSCL;
where gP-bCDSCL is a reciprocal vector for CDSCLb, related to gP-aCDSCL by the sec-

ondary strain. In common with the principal primary O-lattice planes, a principal

secondary O-lattice plane is always normal to at least one DgP-II irrespective the

shape of the O-elements. The secondary O-lattice determined from the above for-

mulas is derived mainly according to the misfit between the CDSCLa and CDSCLb,

rather than the misfit between the CCSLa and CCSLb. However, if the calculated

dislocation structure can be realized in an interface parallel to a principal secondary
O-lattice plane depends on whether the O-lattice elements in the plane really define

good matching between CCSLa and CCSLb. Since good matching between CDSCLa

and CDSCLb is a necessary condition for good matching between CCSLa and

CCSLb, the secondary O-elements must comprise the good matching regions be-

tween CCSLa and CCSLb. The principal secondary O-lattice planes, containing a

single one (in secondary invariant plane strain) or periodic O-elements, should serve

as candidates for the singular interfaces, which may contain either no or periodic

secondary dislocations.
Accordingly, any singular interface must lie normal to at least one DgP-II. If the

DgP-II(’s) is parallel to gP-aCCSL and gP-bCCSL, which define the CCSL plane for the

preferred state, then the interface normal to DgP-II(’s) will not contain steps. In a

special case when a secondary O-plane element can be defined, the interface normal

to all DgP-II’s, gP-aCCSL and gP-bCCSL will contain neither secondary dislocations nor

steps. Then, all restored DgP-CCSL’s for the particular CCSL plane remain the same

orientation parallel to gP-aCCSL and gP-bCCSL once the constraint is removed, and an

ideal plane of dense CSL points (or with negligible strain) truly exists (AII). If the
parallel DgP-II’s are not parallel to the gP-aCCSL and gP-bCCSL, the dislocation free

interface normal to all DgP-II’s must contain steps (BII). Similarly, an interface con-

taining periodic dislocations may or may not contain steps, depending on relative

orientations between the DgP-II(’s) defining the interface and gP-aCCSL or gP-bCCSL.

Unlike DgP-CCSL, DgP-II’s can be directly measured from a diffraction pattern.

Moreover, like the DgP-I’s, the total number in the set of DgP-II’s is limited. It is easy

to recognize DgP-II’s once the CCSL in reciprocal space is determined. According to

the reciprocity theorem [93], a set of planes in the CDSCL in direct space is repre-
sented by a point of the CCSL in reciprocal space. In other words, when a constraint

is applied to form a CCSL, the points defined by gP-aCDSCL and gP-bCDSCL should be in

coincidence, defining a point of either CCSLa or CCSLb in reciprocal space. Without

the constraint, DgP-II is the vector connecting the points defined by gP-aCDSCL and

gP-bCDSCL (identified in their own crystal basis). Since the principal CDSCLa plane is

among the planes containing the densest lattice points, gP-aCDSCL should be among

the small vectors of CCSLa in reciprocal space. Thus, a DgP-II can easily be identified

from a diffraction pattern, as its associated points should be close to the origin and
be nearly in coincidence. Although, in contrast to a DgP-I, a DgP-II is not necessarily
associated with a low index ga or gb, it is often so defined because it is associated with

a small ga or gb. For example of the CCSL in Fig. 7a, the set of DgII’s include
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ð�1�11ÞA � ð10� 3ÞC, ð222ÞA � ð305ÞC and ð113ÞA � ð402ÞC, as can be seen by a

comparison of Fig. 7a and b. The particular DgP-II normal to the habit plane is

defined by ð�1�11ÞA � ð10�3ÞC. The orientation of this DgP-II is close but not

parallel to ð�1�13ÞA or ð10�1ÞC, which are the gP-aCCSL and gP-bCCSL vectors that

define the terrace plane in the stepped habit plane.

4.5. Steps in singular interfaces in a secondary preferred state

A singular interface will contain steps when it is inclined to the plane of 2D CCSL

representing the preferred state. For the interfacial steps to be coincident with the
periodic secondary dislocations that completely accommodate the secondary misfit

in the habit plane, i.e. as described by the third optimum condition for the d-steps,

the OR and IO of the habit plane must be special. Based on the derivation given in

Appendix B, the geometrical condition that permits the d-step structure can be

examined according to a series of characteristic triangles in reciprocal space. The

edges of a characteristic triangle are defined by three measurable reciprocal vectors:

gstep, Dgk, and DgII (see also Fig. 16). The gstep vector is parallel to the smaller vector

of gP-aCCSL and gP-bCCSL that defines the terrace planes of the stepped interface, and
1=jgstepj, as an interplanar spacing, serving as the unit for step height. The DgII vector
is a secondary Dg vector, whose related gaCDSCL must satisfy the condition

g0aCCSLb
II
s ¼ i, where i is a non-zero integer number and bIIs is the Burgers vector of the

secondary dislocation associated with the d-step. The Dgk vector is a vector parallel

to the particular DgP-II normal to the singular interface. While the relationship be-

tween gstep and Dgk determines the spacing of the steps, the relationship between gII
and Dgk is associated with the dislocation spacing. It is shown in Appendix B that

formation of a characteristic triangle by these three vectors ensures the identity of
step spacing and dislocation spacing. The condition for the characteristic triangle

can only be realized at special ORs, and thus restricts the OR for the singular

interface containing the d-steps. The geometry of the characteristic triangles also

guarantees that fractional planes from different phases, saying n=jgP-aCCSLj vs.

m=jgP-bCCSLj (with n and m being integers), will meet edge-to-edge constantly at every

step, as explained in Appendix B. Because of the linear relationship among the

vectors in the same zone axis, one finds a group of parallel Dgk’s in a set of char-

acteristic triangles. In addition, many other Dg’s (including restored DgP-CCSL’s) may
also lie in the same direction due to the linear relationship.

In addition to the d-steps, a singular interface in a secondary preferred state may

contain steps when it contains a secondary invariant line. As explained for the case

of primary invariant line strain, this stepped interface must be normal to a group of

parallel DgII’s, whose related g’s must lie in the zone axis of the Burgers vector for the

secondary O-lines. The parallel Dg’s are classified differently from that for the

interface containing a d-step structure. The parallel Dgk’s in the characteristic tri-

angles do not belong to DgII’s, and DgII’s in the triangles are not parallel to one
another. The interpretation of the parallel Dg’s depends on the construction of the

3D CCSL, which often involves a certain degree of ambiguity. However, because a

2D CCSL structure will be discontinuous at any step, a step in an interface in a
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secondary preferred state should be treated as a linear defect, no matter whether or
not the step is associated with a dislocation according to a model lattice. As long as

the 2D CCSLs as the reference for the preferred state are identical, the difference in
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the results from different models is not substantial, as demonstrated in the following

example. Note that the above conclusion is a special property of the interfaces in a

secondary preferred state. It is in contrast to an interface in the primary referred

state, in which the steps at the atomic scale do not usually cause discontinuity of

coherency, i.e. the primary preferred state. Only the dislocations, associated with

discontinuity of coherency, are the prominent structural defects in the interface.
According to the observed diffraction pattern at the Pitsch OR in a cementite/

austenite system (refer Fig. 13a), a CCSLA (cementite lattice in constraint) in re-

ciprocal space has been constructed in Fig. 8a based on a principle of small sec-

ondary misfit and small unit CCSL cell [45]. Unlike the case of the T–H OR in Fig. 7,

all Dg’s in this pattern are identical to the small g vectors of cementite lattice. The

corresponding CCSLA in direct space has been determined based on a 3D analysis

[45], as given in Fig. 8b. Since the selected 2D CCSLA for the preferred state in the

plane normal to gP-aCCSL ð¼ ð1�13ÞAÞ or gP-bCCSL ð¼ ð101ÞCÞ, does not consist of the
small CDSCLA vectors as the amenable Burgers vector, an interface containing

the d-steps has been suggested (Fig. 8c), with the OR in the condition of parallel Dg’s
in Fig. 8d [45]. This OR is consistent with the observation (refer Fig. 13a) [66]. On

the other hand, it is possible to determine another OR (Fig. 8e) in about 3� from that

in Fig. 8d, in which all DgP-II’s are parallel as required for a secondary invariant line

strain. The matching condition of the hypothetic interface normal to parallel DgP-II’s
is illustrated in Fig. 8f [45]. The interfaces normal to the parallel Dg’s in both cases

contain steps, because in no case can the parallel Dg’s be parallel to any gP-aCCSL and
gP-bCCSL. The planes of 2D CCSLA representing the preferred state, i.e.,

gP-aCCSL ¼ ð1�13ÞA and gP-bCCSL ¼ ð101ÞC, are the same for both interfaces. Both

interfaces are normal to DgP-II ð¼ ð1�11ÞA � ð200ÞCÞ. The interface in Fig. 8c is

normal to the Dgk connecting (0 0 2)A with (2 0 4)C) (Fig. 8d), while the interface in

Fig. 8f is normal to the DgP-II connecting (0 0 2)A with (1 0 3)C. As can be expected,

the planes of the CDSCLs defined in the different lattices (fine lines), and the CCSLs

defined in the different lattices (indicated by circles around the lattice points in the

different phases near the boundary), discontinue at the steps in Fig. 8c. In contrast,
the planes of the CDSCLs together with the CCSLs from different lattices fully

match at the interface along the secondary invariant line in Fig. 8f, similar to the case

of an interface containing a primary invariant line (Fig. 6).

However, unlike the interface in the primary preferred system, the secondary

invariant line is not favored by nature. After the lines representing the planes of the

CDSCL were removed, as shown in Fig. 8g and h corresponding to Fig. 8c and f,

respectively, the common aspects of the interfaces become clear: the repeat structural

units (carrying a slight distortion) in the terrace planes are identical in both inter-
faces. Though the CDSCL or 3D CCSL continues at steps in interface containing the

secondary invariant line, the 2D CCSL or the pattern of the structural units disrupts

at the steps, as the intrinsic linear defects, no matter whether or not the steps are

associated with secondary dislocation. As stated earlier, it is the 2D CCSL that

represents the preferred state. In this consideration, the discontinuity of 3D CCSL or

CDSCL probably has less physical significance compared with the discontinuity of

the 2D CCSL. To preserve the 2D CCSL as far as possible, the density of the steps
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should be minimized. For the reduction of the steps, the orientation of the parallel

Dg’s to define the singular interface should be close to both gP-aCCSL and gP-bCCSL as

far as possible. This may be the reason why the interface containing the secondary

dislocations is preferred (as it was observed [66]) to the interface containing the

secondary invariant line that crosses denser steps, since the average spacing between

the steps in the latter interface is smaller (i.e.1.67 vs. 4.57 nm [45]). 15

While the interpretation of the steps in terms of dislocations should not make

substantial difference in the selection of the singular interface, it is possible to

interpret the same stepped interface either in terms of d-steps or an invariant line

strain. Though DgII’s are usually much smaller than Dgk’s, one may determine a

‘‘misfit strain’’ so that it relates all parallel Dg’s. In this strain, a ‘‘quasi-invariant’’

could be defined along the direction of ‘‘zero misfit’’ [96]. If the strain generating the

‘‘quasi-invariant’’ line is interpreted as a secondary strain, then any interface con-

taining d-steps could also be regarded as a plane containing a secondary invariant
line. As can be seen from Fig. 8c and f, any step in these interfaces is associated with

a displacement. The essential role of the steps is to cancel the secondary misfit in the

terrace plane, or to allow for repetition of a region of good matching in every terrace

plane. In a secondary invariant line model, the secondary misfit along the projection

of the invariant line in the terrace plane is cancelled by the secondary misfit asso-

ciated with the step vector. The step height must be commensurate with the inter-

planar spacing of the CCSL planes normal to gP-aCCSL and gP-bCCSL (Fig. 8f). In the

d-step model, the secondary misfit along a particular direction, over a distance of
the step spacing, must be cancelled by the dislocation associated with a d-step. The

Burgers vector of the dislocation, as a CDSCL vector, is specified by the displace-

ment vector (between the lattice points) associated with the step vector in the con-

strained state (refer Appendix A). The step height must be commensurate with the

interplanar spacing of the planes defined by gP-aCCSL and by gP-bCCSL (Fig. 8c).

Different definitions of the secondary misfit strain are based on different CCSL.

While the interface in Fig. 8c could be interpreted by an invariant line model, the

secondary strain may appear too large to be considered reasonable. However, as
long as the 2D CCSL for a given singular interface is unique, the OR, IO and

periodicity of the steps can be determined solely from the parallelism condition of

the Dg’s, independent of the construction of the CCSL. To avoid confusion in the

description of the steps, it is convenient to characterize the steps by their intrinsic

characteristics of the steps, including the spacing and height of the steps and the

displacement associated with a step vector (i.e. Dv in Fig. 15c). These features only

depend on the OR and IO, and they are invariant with the model of the 3D CCSL.

On the other hand, though the intrinsic characteristics of the steps are clearly shown
in Fig. 8g and h, it is not obvious whether the interfacial misfit is balanced by the

steps. Complete cancellation only occurs in the singular interfaces, which are defined
15 The step spacing would be large if the terrace plane is defined by (1)1 1)A which is near parallel to

(2 0 0)C. Nature does not favor this pair of low index planes, implying the role density of the CCSL prevails

over the effect of the density of the crystal lattice points.



226 W.-Z. Zhang, G.C. Weatherly / Progress in Materials Science 50 (2005) 181–292
by discrete ORs and IOs. The CCSL model is still a useful tool, despite some

uncertainty in the construction of the 3D CCSL. Modeling with a CCSL helps one to

identify the ORs and IOs of the singular interfaces, as well as the 2D CCSL for the

preferred state. The descriptions of the intrinsic characteristics of the periodic steps

should be identical whether the interface is described in terms of secondary invariant

line or d-steps by the CCSL model.
From the experimental viewpoint, steps as linear defects in an interface in a

secondary preferred state are likely visible due to their associated local strain. Pos-

sible observations of the steps crossed by a secondary invariant line by diffraction

contrast may appear in conflict with the conventional experience (mainly from study

of interfaces in the primary preferred state). Dislocations in an interface containing a

primary invariant line should lie along, rather than crossed by the invariant line. In

this context, it is often convenient to analyze the visible steps (using diffraction

contrast) in a system in a secondary preferred state in terms of d-steps. While the
displacement associated with a step vector is variable with the OR, the secondary

Burgers vector is a rational fraction of a lattice translation vector of either crystal

lattice and is independent of the OR. For a proper interpretation of the diffraction

contrast associated with the steps, the CCSL should be constructed so that the

Burgers vector of the d-step should be close to Dv, which is the cause of the strain

contrast. It is worth clarifying that an effective Burgers vector associated with a step

is not always unique, because there might be multiple choices of the step vector and

misfit along the step riser causes the difference. 16 However, the secondary Burgers
vector associated with a d-step must be unique, and the misfit along the step riser, if

exists, should be accommodated by another set of dislocations. On the other hand,

one can always draw a CCLS for any heterophase system, and define a Burgers

vector associated with a step in terms of a CDSCL vector. However, if the system is

in the primary preferred state, the CCSL and CDSCL are meaningless. The atomic

steps or structural ledges in an interface in the primary preferred state are not

associated with discontinuity of the preferred state, and they are not usually treated

as linear defects.
An extra plane associated with a d-step may be observed from a high resolution

image (Fig. 13c) [66]. Caution must be exercised in applying the result of the extra

plane for deducing the secondary Burgers vector. As discussed in detail in Appendix

A, whether there is an extra plane associated with a step depends solely on the

orientation of the Moir�e plane formed by the related planes with respect to the

interface plane. The related planes may or may not be linked by the secondary misfit

strain. This is in contrast to the systems in the primary preferred state, in which

the related low index planes are usually associated by the primary Dg’s connecting
the reciprocal spots in the nearest neighbor. Only when the Dg’s are associated by the
16 Attributing a unique effective Burgers vector to structural ledge is a common mistake. It has not been

broadly recognized that a structural ledge is different from a twinning dislocation associated with a step,

which is fully coherent along the step riser.



Table 3

Descriptions of singular interfaces in primary preferred states in terms of the CCSL, secondary O-lattice and various Dg vectors

Model

lattice
Identification of principal planes Reciprocal vectors for singular interfaces

Crystal

basis

Dg Related ga AII BII CII DII FII EII GII

Ideal CSL gP-aCSL’s DgP-CSL’s Any DgP-CSL’s
gP-bCSL (measurable)

CCSL gP-aCCSL
gP-bCCSL

DgP-CCSL’s
(unmeasurable)

Any Restored

DgP-CCSL’s
In m-ZX

Restored

DgP-CCSL’s
In 1-ZX

One

restored

DgP-CCSL

Crystal gP-a gP-aCCSL gP-aCCSL gP-aCCSL
gP-b gP-bCCSL gP-bCCSL gP-bCCSL

Secondary DgP-II’s gP-CDSCL All DgP-II’s DgP-II’s DgP-II’s DgP-II’s One DgP-II
O-lattice (small) in 1-ZX in 1-ZX in 1-ZX

Dg0ks ¼
gstep � DgII

Dgk’s Dgk’s

Note. 1-ZX (m-ZX) means that the g vectors connected by the corresponding Dg’s are defined in one (many) zone axis (ZX).
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misfit strain field for determining the dislocations, will the result of extra planes (in

the correlated pairs) be consistent with that of the g � b criterion.

As a summary for singular interfaces in the secondary preferred states, Table 3

lists the principal planes of model lattices and their related Dg’s for the singular

interfaces in secondary preferred states. When an ideal CSL is definable, identifi-

cation of important CSL planes from a diffraction pattern is usually straightforward.
Otherwise, identification of DgP-II’s, DgP-CCSL’s and Dgk’s in a diffraction pattern

depends on the 3D CCSL construction. However, as discussed above, while the

suggestion of the 2D CCSL for the secondary preferred state is important, the

ambiguity in the construction of the 3D CCSL may not affect crystallographic fea-

tures of the singular interface. Though some singular interfaces in Table 3 have been

classified according to different descriptions for steps, the difference in the inter-

pretations of the steps is not substantial. The following section presents a more

practicable method, in which the attribution of the Dg’s for systems in the secondary
preferred state is ignored.
5. Macroscopic descriptions of singular interfaces

From an experimental point of view, it is often easier to conduct accurate mea-

surements of Dg’s, the OR and habit plane orientation from a superimposed dif-

fraction pattern, than to obtain a quantitative description of the interfacial structure.
As can be seen from Tables 2 and 3, any singular interface is associated with at least

one Dg, irrespective of the preferred state, of whether the interface has a rational or

irrational orientation, and of how many sets of periodic dislocations might exist in

the interface. Since, as hypothesized, the habit plane is a singular interface, identi-

fication of plausible singular interfaces in terms of measurable Dg’s will allow one to

rationalize the habit plane directly from the measured crystallographic data. Because

any ‘‘useful’’ Dg that defines a singular interface must be subject to the constraint

imposed by the optimum conditions, it is possible to investigate singular interfaces
according to a characteristic arrangement of the Dg with other reciprocal vectors,

which can be realized only at special ORs. All three optimum conditions suggested in

Section 3.4 for specifying the singularities can be described by the alignment of a Dg
with at least one more measurable reciprocal vector. Simply by studying the

arrangement of reciprocal vectors, one may be able to identify a singular interface

with a macroscopic parameter and to rationalize the precipitation crystallography at

the same time.

5.1. Three Dg parallelism rules

It would be desirable to link each optimum condition with a particular Dg par-

allelism rule, but the ambiguity in determining the preferred state prevents such a
one-to-one correspondence. While the first and second optimum conditions are

applicable to interfaces regardless of the preferred state, the third condition is

principally applicable to interfaces in a secondary preferred state. For the simplicity
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of application, three Dg parallelism rules are suggested below. They are closely re-

lated to the optimum conditions, providing a link between the precipitation crys-

tallography and possible optimum interfacial structures. When an ambiguity in the

preferred state is encountered, the dilemma can often be bypassed by simply

examining parallelism of a group of measurable reciprocal vectors in a diffraction

pattern and by disregarding the identities of the parallel Dg’s. If the OR fulfills the
condition of parallelism of reciprocal vectors specified by any one of the rules, it

implies that an interface must be normal to the parallel vectors.

Rule I (Dg is parallel to a rational g). Rule I mainly expresses the first optimum

condition, i.e. the elimination of interfacial singularities represented by atomic steps

or steps with terrace planes defined by gP-aCCSL and gP-bCCSL. An interface that follows

Rule I may exhibit either primary or secondary preferred state. In a system in the

primary preferred state, Rule I requires that DgP-I be parallel to either gP-a and/or gP-b.
It is possible that an interface that obeys Rule I is parallel to a dense atomic plane in

only one phase, and is irrational with respect to the crystal coordinates of the other

phase. In contrast, in a system in a secondary preferred state, Rule I implies that

DgP-II is parallel to gP-aCCSL and gP-bCCSL, or that DgP-CSL is parallel to gP-aCSL and

gP-bCSL when an ideal CSL exists. Thus, an interface that obeys Rule I must be

parallel to rational planes in both phases. Rule I can be satisfied in any system,

without being subject to any restrictions imposed by the lattice parameters of the two

phases. If this rule is not observed, another optimum condition must have prevailed
over the first optimum condition.

Rule II (Two DgP-I’s are parallel). This rule corresponds to the second optimum

condition, applied only to the primary preferred state––eliminating interfacial linear

defects represented by the primary misfit dislocations. Being equivalent to the con-

dition of a primary O-line strain, satisfaction of this rule is possible only when

rankðT Þ < 3 is allowed by the lattice constants, and the lattice correspondence is

limited by the primary preferred state (a one-to-one lattice point correspondence
with small misfit in the interface). 17 This rule applies to those cases in which

meaningful gP-I’s are readily recognized as small difference vectors connecting

neighboring principal g’s from the two crystal lattices. An OR that allows two gP-I’s

to be parallel cannot usually be expressed using parallelism of rational indices.

Consequently, a singular interface that follows Rule II alone is typically in an

irrational orientation, and, on the other hand, an irrational semicoherent habit plane

is likely formed due to this rule.
17 According to the criterion set by Christian [84], an invariant line strain is possible only when k1 < 1,

k2 > 1, and k3 6¼ 1, where ki are the eigenvalues that define the principal strains. The principal strains can
be decomposed from A, which depends on the lattice correspondence and lattice constants.
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Rule III (Two Dg’s are parallel). At first sight Rule III appears to be covered by Rule

II. However, Rule III is mainly reserved for those cases in which the DgP-I’s cannot
be defined, and the system is then in a secondary preferred state. An interface fol-

lowing Rule III may be governed by either the second or third optimum condition.

While the classification of Dg depends on the CCSL construction, use of Rule III is a

simple approach for rationalizing the precipitation crystallography without calcu-
lating the CCSL. However, when the parallel Dg’s lie in a rational orientation (Rule I

must be applied simultaneously), the singular interface must be governed by the

second optimum condition, since the third optimum condition only applies to

stepped interfaces. When the parallel Dg’s do not lie in a rational orientation, the

singular interface normal to the parallel Dg’s contains steps. The misfit in at least one

direction in the interface should be cancelled by the displacement associated with the

steps, no matter whether the second or third optimum condition is active.

If we take two axes to represent the OR related variables and the IO related

variables, the association of the Dg parallelism rules with the local energy (E) minima

in the BGP space can be demonstrated schematically, as shown in Figs. 9 and 10. In
Fig. 9. Illustrations of the variation of a component of interfacial energy with the orientation-relationship

(OR) and the interface-orientation (IO): (a) a minimum in the chemical component of the interfacial

energy ðECÞ is associated with low index planes in lattice b, gP-bi and (b) a minimum in the structural

component of the interfacial energy ðEsÞ is associated with DgP-Ii ði ¼ 1; 2Þ.
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Fig. 10. Illustrations of the Dg parallelism rules: (a) Rule I is realized in an interface (in the primary state)

which is defined by the intersection of curves identified by gP-b and DgP-I; (b) Rule I is realized in an

interface (in a secondary state) defined by either DgP-CSLkgP-bCSL (sharp cusp), or DgP-IIkgP-bCCSL (rounded

cusp); (c) Rule II is realized in an interface which is defined by the intersection of curves identified by DgP-Ii,
i ¼ 1; 2, or 3, associated with the different gP-a’s and (d) Rule III is realized in an interface (in a secondary

state) defined by DgP-II3kDgk, or DgP-II1kDgP-II2.
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these figures, a point on the IO axis represents a direction referred to one of the

crystals, arbitrarily chosen as lattice b. Therefore a straight line parallel to the OR
axis represents the interfaces whose indices are fixed with respect to lattice b. Fig. 9a
shows an example where the chemical component of the interfacial energy (Ec) is at a

local minimum when the interfacial orientation is in a particular orientation gP-bi (the

subscripts i ¼ 1, 2 in Figs. 9 and 10 indicate different planes). Fig. 9b shows the

variation of the structural component of the interfacial energy (Es). For any OR,

the energy reaches a local minimum when the interface is normal to the DgP-Ii. The
locus of a series of energy cusps corresponding to different ORs is represented by a

curve in the OR–IO plane. Each curve is identified by the characteristic IOs, namely
by gP-bi in Fig. 9a and by DgP-Ii associated with a particular gP-ai in Fig. 9b. However,

these interfaces are singular only with respect to the IO.
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At the intersection point of any two curves, the interface must be normal to both

reciprocal vectors that define the curves, and is now singular with respect to the OR

(but it may not be fully confined, as explained later). This type of plot can be used to

illustrate a Dg parallelism rule, as is the case for Fig. 10. Rule I is illustrated in Fig.

10a and b for the primary and secondary preferred states respectively. While the

energy cusp associated with a gP-bi is independent of the OR, the energy cusp
associated with gP-bCSL or gP-bCCSL corresponds to a point in the OR axis, empha-

sizing the sensitivity of the energy to the OR in a secondary preferred state. Fig. 10c

illustrates Rule II, with two DgP-II’s being parallel at the intersection points of the

curves. The minima in the energy surface in Fig. 10d, for interfaces in secondary

preferred states, are not extended from continuous valleys (see also Fig. 10b). The

implication is that while each periodic structure of primary dislocations in an

interface normal to DgP-Ii is associated with a local energy minimum (singular with

respect to the IO) for any given OR (Fig. 9b), this may not be true for the secondary
dislocations.

All singular interfaces listed in Table 1 can be classified in terms of Dg parallelism

rules. More specifically, all singular interfaces are normal to either DgP-I or DgP-II,
depending on the preferred state, except for the AII interface, which may be normal

to a DgP-CSL rather than DgP-II if an ideal CSL exists and hence no DgP-II is definable
(in this case a DgP-CSL may be identical to a small g of a crystal lattice). Table 4 lists

all the singular interfaces classified previously in Table 1 in terms of the Dg paral-

lelism rule(s). In the table, the tick mark ‘‘U’’ denotes whether a corresponding rule
is applied to the type of interface specified at the top of each column. The presence of

two or more ticks in any column indicates that the corresponding rule is applied to

vectors in two or more zone axes independently. Multiple applications of the rules

are possible only when the lattice constants of the two lattices are specially related.

Most singular interfaces in the table can be uniquely identified by different

combinations of the rules, but in three cases, different types of interfaces are iden-

tified by the same rule(s). One case involves the EI and EII interfaces, as they both

follow Rule I. Since identification of the DgP-I’s is usually obvious, distinguishing an
EI from an EII interface is often straightforward. On the other hand, both BII and FII
interfaces follow Rule III twice, and both DII and GII interfaces follow Rule III once.

Theoretically, parallel Dg’s defining a DII (or BII) interface must be among DgII’s, but
the parallel Dg’s defining a GII (or FII) interface should include Dgk vectors in the

characteristic triangles, plus some restored DgCCSL’s that are parallel to Dgk’s because
of the linear relationship. However, difference in the interfacial structure between BII

and FII interfaces and between DII and GII interface may not be substantial, since any

steps in these interfaces are considered as linear defects, as discussed in Section 4.5.
In general, an interface that follows (and only follows) Rule III twice must contain

an array of steps, any interface that follows Rule III once usually contains an array

of steps plus a set of secondary dislocations.

Since any singular interface obeys at least one Dg parallelism rule, we consider the

Dg parallelism rules as defining ‘‘the rules of precipitation crystallography, including

the description of the OR and the habit plane orientation’’. A habit plane, as a

singular interface, must be normal to at least one Dg, and the corresponding OR must



Table 4

Descriptions of singular interfaces with the Dg parallelism rules

Rules Opt. Con. AI AII BI BII CI CII DI DII EI & EII FII GII

I DgP-I;IIkgP-a;b Second U U U U U

II DgP-I1kDgP-I2 First (I) UU UU U U

III DgP-II1kDgP-II2 First (II) UU UU U U U

DgP-IIkDgk Third U U
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permit this Dg to be parallel to other Dg0s or gð0sÞ so that one or more optimum con-

ditions are fulfilled. Using these simple rules, one may be able to interpret the pre-

cipitation crystallography directly from measurements made from electron

diffraction patterns without recourse to an initial modeling or experimental deter-

mination of the interfacial structure. Parallelism of Dg’s can also be examined by

calculation, when the parallelism is not directly visible from the available experi-
mental data. Such calculations are simple by use of matrix algebra, and do not re-

quire specification of the model lattice. This situation is especially applicable to cases

obeying either Rule II or III. Then a numerical method or analytical approach

[73,97,98] for determining primary O-lines can be employed, while the physical

interpretation of the strain can be ignored. On the other hand, since the result from a

comparison between the Dg parallelism rules and observations often suggests a

possible singular interface according to Table 4, this may in turn provide help in

construction of proper model lattices and selection of the right Burgers vectors to
specify the interfacial structure in the habit plane.

Before ending this section it is worthwhile to discuss the special situation in which

a Dg is a zero vector, i.e. this Dg connects identical g vectors from different lattices.

Although it is almost impossible that the g vectors from different lattices have exactly

the same length, some g’s may be so close that the corresponding Dg is not visible. In

this special situation a singular interface can be identified by two ways. One way is to

define the zero vector as a virtual Dg that has an infinitesimal length and can be

treated to have any orientation. In practice a non-zero length of Dg often truly exists
from a precise calculation. Since the length almost vanishes, a considerable change of

the Dg direction may not be accompanied with a detectable variation in the OR.

Thus, it is reasonable and convenient to use a virtual Dg, when the length of a Dg is

smaller than the experimental uncertainty. The Dg parallelism rules can be applied as

usual when the virtual Dg is taken into consideration. Another way to bypass the

problem of zero vector is to use an equivalent description corresponding to each rule.

For example, parallelism of two (identical) g’s from different lattices should be

equivalent to Rule I. An alternative expression for Rule II is that all DgI’s whose
related ga’s lie in a zone axis parallel to a Burgers vector, including at least one non-

zero DgP-I, should be parallel to one another. Since the parallelism of two Dg’s im-

plies the existence of a group of parallel Dg’s, the existence of zero Dg vector does not
affect the application of Rule III. However, the conception of the virtual Dg is also

helpful especially when one needs to identify a DgP-II to which Dgk’s must be parallel

(as is the case in Appendix A).

5.2. Further constraints on the orientation relationships

While the OR characterized by a Dg parallelism rule appears unique in the pseudo

3D illustration in Fig. 10, it is not actually so in the 5D BGP space. Although a Dg is

not explicitly defined in either crystal basis, the degree of freedom imposed on the
OR by parallelism of one Dg with another Dg (or g) is equivalent to that imposed by

parallelism of two g’s from the different crystal lattices. Consequently, the constraint

imposed by a single Dg parallelism rule fixes four degrees of freedom in the 5D BGP
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space: a pair of parallel directions in reciprocal space, which defines two degrees of

freedom in the OR, and the parallel reciprocal vectors normal to the interface, which

fully define the two degrees of freedom for the IO. Although genuine experimental

scattering has been measured in some systems, the measured data from many sys-

tems often converge to a narrow, well-defined crystallographic region. These

observations suggest that the remaining degree of freedom left after applying one of
the rules is often in fact fixed. Further conditions restricting the OR may arise still

from factors affecting interfacial energy, such as the distribution of misfit strain, the

type of bonds etc. A number of possibilities are given below.
5.2.1. Satisfaction of two rules in one system

The application of two rules simultaneously implies that two independent par-

allelism conditions are needed to define the OR. Theoretically, redundant conditions

required by two rules cannot be realized simultaneously in a general case. Never-

theless, if we allow the lattice constants to vary, which is equivalent to an extension

of the dimension higher than 5D, additional degrees of freedom can be permitted. In

other words, in some systems the lattice constants may be related in such a way that
two parallelism conditions (specified by different rules) might be compatible with

each other. In these cases, the constraint provided by the two rules will uniquely

determine the OR. A system simultaneously following two rules might be realized in

two ways.
5.2.1.1. Application of two rules to a singular interface. In this case, the major singular

interface or habit plane is normal to all parallel reciprocal vectors specified by two (or

more) rules. Since the structure in this singular interface will satisfy two optimum

conditions, or one optimum condition twice, the driving force selecting this particular

interface plane is obvious. As can be seen from Table 4, many singular interfaces

(except for interfaces D, E and F ) belong to this case. These interfaces following two

or more rules are singular with respect to all degrees of freedom in the 5D BGP space.
The combination of the rules is not however arbitrary. As Rules II and III are

applied to the interfaces in a primary and secondary preferred state respectively,

permissible combinations only hold between Rule I and either Rule II or III. In

addition, combinations are only permitted between the first and second optimum

conditions. Then, an interface that follows either Rules I and II, or Rules I and III,

will be parallel to a rational crystal plane, with the interface containing at least one

set of primary or secondary O-lines, such as the AI, AII, CI, and CII interfaces in Table

4. On the other hand, multiple applications of one rule for a different pair of re-
ciprocal vectors are also possible, provided that the parallel vectors applied in one

rule are not linearly dependent on those used in the other rule. However, a double

application of Rule I to one interface is equivalent to the application of Rule I

followed by either Rule II or III to the same interface. Both approaches lead to the

parallelism of the Dg’s. Therefore, only double applications of Rule II or III should

be considered. In particular, when Rule II is applied twice, the corresponding

interface is a BI interface. When Rule III is applied twice, the corresponding interface
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is either a BII or an FII interface. AI and AII interfaces also belong to this category, as

they follow three rules.

5.2.1.2. Application of the rules for different singular interfaces. In this case, a pre-

cipitate must contain at least two singular interfaces, each of which obeys one rule. 18

The most common case is that the two interfaces follow Rule I. This situation often

occurs when the two lattices have common symmetry elements lying parallel to each

other. If the two lattices have the same type of crystal structure, at an OR in which
all the axes of crystals are parallel (e.g. a cube/cube OR for an fcc/fcc system), all g

vectors with identical indices will be parallel, and every DgP-I will be parallel to their

associated principal g’s. Then, a set of equivalent singular interfaces can be formed,

serving as different facets of an embedded phase. Another possible combination is

that one interface follows Rule I while a second interface obeys III, corresponding to

the optimum condition of coincidence of steps and secondary dislocations. It is

possible that one interface follows Rule I while a second interface obeys Rule II.

However, when this occurs, both interfaces must contain an invariant line. The
interface that follows Rule I must also follow Rule II if its structure is to remain

periodic, and therefore belongs to the case of two rules satisfied by one interface.

This implies satisfaction of three rules in a system, and is possible only when the

lattice constants are specially related.

The precipitation crystallography leading to two singular interfaces, each fol-

lowing one rule (commonly Rule I), is not necessarily more favored than the alter-

native possibility that leads to a major singular interface. The choice depends on

various factors, including the overall minimization of the interfacial energy and
perhaps the growth kinetics, and it is not predictable from the present approach.

5.2.2. Supplementary constraints

When an interface does not fit into the framework of two rules simultaneously, an

additional constraint is required to fix the OR for a singular interface. This occurs

for those interfaces that follow a single rule in Table 4, i.e. DI, DII, EI, EII and GII.

Fortunately, both experimental work and empirical criteria are available in the lit-

erature to guide in the selection of supplementary constraints, as outlined below. The

first of these is:

5.2.2.1. A pair of small vectors of similar lengths in the interface are parallel. This

constraint applies to all types of interfaces that follow a single rule, and is most likely
to occur in practice. The set of parallel vectors are usually among the smallest or the

next to smallest lattice vectors in the crystal lattices or CCSLs, 19 provided the misfit
18 Note that observation of two facets from a precipitate does not imply that each facet follows a rule,

since one of the facets may be singular only with respect to its normal.
19 This condition is particularly convenient for a TEM study. If the interface is examined edge-on with

the electron beam parallel to low index zones in the two crystals, a superimposed diffraction pattern (for

examining the Dg parallelism rule(s)) and high resolution TEM image for studying the atomic structure of

the interface can be recorded.
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between them is small. Thus, the displacement between the parallel vectors must

correspond to either a primary or secondary misfit strain. Clearly, the misfit asso-

ciated with the particular pair of vectors is minimized when these vectors are parallel.

Major EI and EII interfaces are likely to be subject to this supplementary constraint.

This condition is particularly true for systems consisting of a metal/oxide combi-

nation [99]. An interface following Rule I is similar to an interface between an
epitaxial film and substrate. Parallelism of small mismatching (or nearly matching)

vectors was used by Kato et al. [100] as a criterion for explaining epitaxial ORs.

Howe [12] also noted a strong tendency of alignment of the close-packed directions

from different phases. The present condition is in principle consistent with these

suggestions or observations.

For the stepped interfaces, including DI, DII, and GII, the above constraint can be

considered to be a partial satisfaction of the first optimum condition. Since the

parallel rational vectors should not be crossed by any interfacial steps, they must
define the step risers shared by the interface and the terrace plane. Therefore, this

supplementary constraint equivalently requires that the risers of all steps be free of

atomic kinks, instead of eliminating all interfacial steps required by the first optimum

condition. Any extra distorted or wrong bonds due to kinks associated with a step

will thereby be removed. The tendency for elimination of kinks on steps is probably

greater in a DII or GII interface than in a DI interface, since interfacial steps and their

associated kinks are expected to provide a more significant contribution to the

interfacial energy when the interface is in a secondary preferred state. While stepped
interfaces in a secondary preferred state are more complicated to analyze, a strong

tendency for the step riser to be parallel to a pair of small vectors often allows a

simplification of the 3D problem into a 2D+1D problem (normal and parallel to the

parallel vectors).

The second supplementary constraint applies when:

5.2.2.2. No small vectors of similar length in the interface are parallel. Among the five

types of singular interfaces that are not fully constrained, the DI interface is most

likely to disobey the first constraint listed above, as the contribution of the local

distortion (associated with kinks in steps) to the interfacial energy may be less sig-

nificant in a DI interface. There must be a reason for this deviation from parallelism,

just as there is for those cases in which no low index planes are parallel. Two possible

reasons are discussed below for DI interfaces.

5.2.2.2.1. Maximization of the dislocation spacing. Since a DI interface only

contains a single set of dislocations, a simple parameter to evaluate the interfacial

energy is the dislocation spacing [73]. Clearly, the dislocation spacing will vary with

the remaining degree of freedom in the OR. The optimum OR, corresponding to a

DI interface characterized by a particular bLi describing the dislocations, may be the

one that leads to the maximum dislocation spacing [73]. This condition implies that

the interfacial energy is minimized when the dislocation spacing is a maximum.
The above principle can also be used for choosing among the possible DI interfaces

corresponding to different bLi ’s. However this principle should be used with

caution. The appropriate selection of the bLi ’s remains a challenging problem,
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particularly when the dislocation spacing is small, or the difference between the

various sets of dislocations is not significant. It is often assumed that the degree of

coherency strain in the areas between the dislocations varies with the periodicity of

the O-elements where the good-matching regions locate. In other words, the misfit

strain field around every dislocation is assumed to be identical. Based on this

assumption, the interfacial energy may be expressed as a simple (monotonic)
function of the dislocation density. The above assumption is valid when the dis-

location spacing is large, since the distribution of the coherency strain in the re-

gions between different pairs of dislocations is likely similar. Such a variation is

sensitive not only to the dislocation spacing itself, but also to the dislocation

configuration with respect to the crystal structures. However, when the dislocation

spacing is small, the coherency strain could vary significantly from one area to

another. In this situation, even for interfaces containing a single set of primary

dislocations, it may become groundless to determine preference of the interfaces in
terms of dislocation spacing, as the relative interfacial energy is not simply indi-

cated by the values of the dislocation density.

5.2.2.2.2. Availability and mobility of interfacial dislocations. The phenomeno-
logical theory of martensitic crystallography (PTMC) [101] requires that the habit

plane is glissile, or equivalently that the interfacial dislocations lie on a slip plane. It

can be shown that the PTMC is in accord with Rule II [97], but a DI interface is more

general. The constraint of the dislocation orientation can restrict fully the habit

planes to discrete coordinates in the 5D BGP space. Some precipitates, for example

of various metal hydrides, have been considered to form in a similar manner to

martensite [63,64,102]. Plausible slip systems for the interfacial dislocations have also

been considered from another viewpoint by Dahmen and Westmacott [103]. In this
approach the invariant line has been required to lie at the intersection of the cone of

unextended lines with a slip plane, while the Burgers vector was constrained differ-

ently from that in the PTMC. Whether or not the habit plane in a diffusional phase

transformation is truly glissile in any precipitation transformation requires careful

experimental work. This question has been the center of a long-standing, but as yet

unresolved debate [104].

On the other hand, the availability of interfacial dislocations may affect the

development of the precipitation crystallography, as suggested by observations from
bcc/hcp alloy systems, in which the slip systems in the two lattices are rather dif-

ferent. In Zr–Nb alloys the precipitation crystallographies are different when the two

phases exchange their identities as the precipitate and matrix phases [21,105,106],

though both cases can be explained with the invariant line consideration. A similar

observation was made by Duly [107] after an extensive survey of bcc/hcp alloy

systems, although he proposed another criterion, a ‘‘surface variation’’ method

based on growth considerations, to explain the OR. Dahmen and Westmacott [108]

also noticed the change of invariant line in fcc/bcc systems as the precipitates and
matrix exchange their identities. They considered that this results from the change of

the slip plane in the matrix.
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5.3. Comparison with experimental observations

It is recognized that the methodology of the Dg parallelism rules, plus the use of

simple supplementary constraints when necessary, helps to identify local minima, not

global minima, of the interfacial energy. Through its links with characteristic

structures in singular interfaces, this method helps to elucidate why a particular

precipitation crystallography, and not one in its vicinal coordinates, is observed. Al-

though the Dg parameter has not been broadly used in the literature, the distribution

of Dg’s is often available as a ‘‘byproduct’’ from experimental records of the OR and

the habit plane orientation. According to the arrangement of the Dg’s in reported

diffraction patterns, it is often possible to apply the Dg parallelism rules in a com-

parison with the reported habit planes.

In this section we first present examples of the application of each Dg parallelism

rule. While Rule I is simple to recognize, Rules II and III are often less obvious. The
validity of applying Rules II and III to these examples has relied not only upon

diffraction pattern information but also on O-lattice calculations, which provided

more precise comparison (the details of the calculation have been presented else-

where). Besides these examples, the Dg parallelism rules are compared with an

extensive set of experimental data, to show the general applicability of these simple

rules to many systems, which may or may not have been interpreted by other models.

This comparison is mainly based on visual evidence from diffraction patterns. The

uncertainty in the comparison is thus of the same order of magnitude as the accuracy
in the OR measurement. As discussed later, one may expect a small degree of

residual long-range strain field, especially when two rules are identified. This toler-

ated strain could be of the same order as the measurement uncertainty. This implies

that when two rules are defined within the experimental uncertainty, the interfacial

structure may be described by the singular structure corresponding to the two rules,

but some residual long-range strain might exist in the interface.

5.3.1. A system following Rule I: TiN/Ni [42]

The crystallography of TiN precipitates produced from an internal nitridation of

a Ni–Ti alloy has been studied by Savva et al. [42]. They observed five types of
distinct ORs. Each of the observed ORs can be described (within the experimental

uncertainty) by Rule I. Fig. 11 presents the two types of ORs that are most fre-

quently observed in the system. The diffraction pattern in Fig. 11b exhibits a typical

cube–cube OR, where the reciprocal vectors of the identical indices from different

lattices are parallel to each other, and they are naturally parallel to the Dg connecting
them. The facets in Fig. 11a are parallel to the plane of {0 2 0} in both TiN and the

matrix phase. Each facet is also normal to a DgP-I connecting a pair of {0 2 0} spots

from different lattices. The simple OR and facets in this case are readily understood,
as they could be expected from the concept of anisotropic surface energy. However,

the reason for the irrational OR in Fig. 11d is not so obvious. This OR corresponds

to a well-defined habit plane in Fig. 11c, which is again parallel to the plane of

(0 2 0)TiN in TiN, but in an irrational orientation �(7)1 5)Ni–Ti with respect to the



Fig. 11. TEM images of TiN precipitates in a Ni-rich matrix in (a) and (c) related by two types of ORs in

the diffraction patterns in (b) and (d), respectively. Facets in (a) or habit plane (c) is normal to the vector of

(0 2 0)TiN and a DgP-I, as required by Rule I. (Reprinted from [42].)
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matrix phase. The reason for the irrational OR becomes clear when Rule I is applied:

The OR is such as to cause the particular DgP-I1 [¼ð200ÞTiN � ð1�1�1ÞNi–Ti] to be

parallel to (0 2 0)TiN (Fig. 11d), so that the habit plane can be normal to the parallel
vector DgP-I and gP. In this particular OR the vector of (0 2 0)TiN does not lie parallel

to any low index direction in the matrix phase. While the habit plane has an

approximately high index in the matrix, according to Rule I one would expect that it

should contain a periodic good matching interfacial structure. Indeed, the obser-

vations revealed that this habit plane contain a single set of dislocations, with a

spacing of about 8 nm (the Burgers vector was not characterized). The observation



Fig. 12. A TEM image of a Cr-rich precipitate in a Ni-rich matrix, superimposed with the diffraction

patterns from both phases with correct alignment (Reprinted from [24]). The habit plane between the two

phases is normal to two parallel DgP-I’s, as required by Rule II.
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implies that this interface might also follow approximately Rule II. 20 This is likely,

though no diffraction pattern from other orientations is available, since the authors

[42] noted that a rotation of 1.1� from the nominal OR in Fig. 11c will bring DgP-I2
[¼ð�11�1ÞTiN � ð111ÞNi–Ti] to be parallel to (0 2 0)TiN. It is possible to find an OR

near the nominal OR (since a slight deviation was actually observed, but not

quantitatively determined), so that both gP-I’s are approximately parallel to (0 2 0)TiN.

Parallelism of the DgP-I’s can lead to the suggestion that the Burgers vector of the

dislocations should be ½01 �1�Ni–Ti/2 or ½011�TiN=2, provided that the interface is in

the primary preferred state.
5.3.2. A system following Rule II: Cr/Ni [17,24]

Precipitation of Cr-rich lath-shaped particles in Ni alloys has been studied

intensively by several authors [17,91,92]. Fig. 12 was taken from the direction of

½10�1�fk½11�1�b [24]. In this figure the image of the edge-on habit plane is

superimposed with the diffraction patterns from both phases with correct alignment.

The OR can be described (approximately) by the K–S OR, i.e. ð1�11Þfkð101Þb and
½10�1�fk½11�1�b, since the spots of (1)1 1)f and (1 0 1)b are not distinguishable.

The habit plane does not lie normal to any point in the superimposed diffraction

patterns in Fig. 12, but it is approximately normal to (1)2 1)f . When attention is

paid to the alignment of DgP-I, it is quickly noticed that DgP-I1 [¼ð111Þf � ð011Þb]
and DgP-I2 [¼ð0�20Þf � ð1�10Þb] are parallel to each other, and that the habit

plane is normal to these parallel DgP-I’s. Interpretation of this irrational habit plane

is straightforward when Rule II is applied. Following Rule II, this habit plane should
20 For a singular interface to obey Rule II and I truly, the lattice constants of the phases must be

specially related. The chance of a system consisting of equilibrium phases to fulfill exactly the above

condition is rare. However, an approximate holding of two rules might be possible, so that a strained

singular structure might be realized.
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contain the O-lines. A strict O-line calculation has been made for this particular

system, and the calculated result of the OR, the invariant line direction and the habit

plane normal are consistent with the observed crystallography within the experi-

mental uncertainty [24].

Despite the consistency in the precipitation crystallography, the periodic single set

of dislocations has not been observed from this habit plane. One reason may be that
the spacing of the dislocations is small, i.e. �1 nm, so that the strained volume

associated with individual dislocations is too small to cause visibility by diffraction

contrast in TEM. These dislocations are also invisible in image of a high resolution

TEM [91,92]. The proper beam direction to view the nearly edge-on dislocations is

when the beam lies parallel to the low index zone axes of ½10�1�fk½11�1�b as in Fig.

12. However, as seen from Fig. 6, all related planes from different lattices should be

coherent, since the habit plane is normal to all DgP-I’s in the zone axes. The invisi-

bility can also be understood from the dislocation characteristic. Because the viewing
direction would be parallel to the Burgers vector, no lattice discontinuity could be

identified. A proper experimental method is required therefore to examine the

interfacial structure of the habit plane in the Cr/Ni system. Selection of the Cr/Ni

system as the example for Rule II is mainly because parallelism of the DgP-I’s is

visible in a single diffraction pattern. In more general cases, the edge-on irrational

habit plane is normal to parallel DgP-I’s that are visible from different beam direc-

tions, as the Burgers vectors for the O-lines defined in the different phases are not

exactly parallel. This situation occurs in a Zr–Nb alloy system, in which a single set
of dislocations in the habit plane (the faceted part of broad interface) was observed

[21], in agreement with an O-line calculation [73].

5.3.3. A system following Rule III: cementite/austenite [66,96]

Investigation of the crystallography of Widmanst€atten cementite precipitated

from austenite in hypereutectoid steels was pioneered by Pitsch [109,110], and has

been followed by many researchers [30,32,66,94,111–113]. Both the Pitsch OR

[109,110] and the Thompson-Howell (T–H) OR [94] can be rationalized by Rule III

[45,96]. We take the Pitsch OR for example, since high resolution TEM experimental

results of the interfacial structures are available [66]. The Pitsch OR is usually de-

scribed as ð100ÞCkð5�54ÞA, ð010ÞCkð110ÞA and ð001ÞCkð�225ÞA. Fig. 13a is the

superimposed diffraction pattern from the parallel zone axes of [0 1 0]C and [1 1 0]A
reported by Howe and Spanos [66]. A deviation of (2 0 0)C from (1)1 1)A toward

(2)2 0)A is evident. The authors noted that the habit plane is normal to Dg of

ð1�11ÞA � ð200ÞC. According to the model of CCSLA in reciprocal space for the

Pitsch OR in Fig. 8b, this Dg is classified as a DgP-II as identified in Fig. 8d. Paral-

lelism of this DgP-II with other Dg’s is not obvious at the first glance, because the size
of the other parallel Dg’s in the diffraction pattern is large. By referring to Fig. 8d,

one finds that the Dg connecting (0 0 2)A with (2 0 4)C and that connecting ()1 1 1)A
with (0 0 4)C in diffraction pattern in Fig. 13a are also normal to the average habit
plane trace specified in Fig. 13a. The careful experimental measurement by Howe

and Spanos [66] provided clear evidence that the Pitsch OR and corresponding habit

plane obey Rule III. Moreover, they were able to determine the step and dislocation



Fig. 13. The superimposed diffraction pattern taken from zone axes of [0 1 0]C of cementite and [1 1 0]A of

austenite in the Pitsch OR in (a), and the high resolution image of the habit plane between the two phases

in (b) showing periodic d-steps, with an enlarged image of extra planes associated with the d-step in (c).

The habit plane is normal to a group of parallel Dg’s, including the Dg indicated in (a) and the Dg con-

necting (0 0 2)A with (2 0 4)C, as required by Rule III. (Reprinted from [66] with permission from Taylor

and Francis Ltd.)
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structure of the habit plane with high resolution TEM, as given in Fig. 13b and c.

The calculated d-step interfacial structure in Fig. 8c [45], including the geometry and
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Burgers vector characteristic, is in good agreement with the experimental observa-

tion [66]. The comparison indicates that the Pitsch OR can be rationalized by the

third optimum condition.

It is worth noticing the difference between Figs. 12 and 13a, which reflects the

different effects of 3D primary preferred state and 2D secondary preferred state on

the development of the interfacial structure. Every parallel Dg in Fig. 12 (or Fig. 6a),
as a DgI, connects the nearest neighbors, as required by the nearest neighbor prin-

ciple for determining the primary misfit strain [37]. Most parallel Dg’s in Fig. 13a (or

8b) do not connect the nearest neighbors. The OR that permits the parallel Dg’s to
connect the nearest neighbors is possible (Fig. 8e), but it is not preferred by nature in

this system. The difference suggests the importance of distinguishing the preferred

state for rationalizing precipitation crystallography. While only the second optimum

condition is applicable to a stepped singular interface in the primary preferred state,

both the second and third optimum conditions may be applicable for interfaces in a
secondary preferred state. Under either condition in the latter case, a singular

interface can be conveniently identified by using Rule III. As discussed in Section

4.5, distinction of the optimum conditions for a stepped interface in a secondary

preferred state is unimportant, since it is the density of the steps rather than the

association of the secondary dislocations with the steps has a major effect on the OR.

5.3.4. General comparisons

Table 5 compares the Dg parallelism rules with a number of experimental
observations in the literature. While a single diffraction pattern can be sufficient for

describing an OR (often defined by one rule plus a set of parallel small vectors), the

full identification of the applicable rule(s) requires a 3D distribution of the reciprocal

vectors. However, in many cases only a 2D configuration of Dg’s, e.g. in a single

diffraction pattern was reported. Identification of the Dg rule(s) has been made from

the available 2D data, unless additional information, e.g. the crystal symmetry,

clearly suggests the orientations of the correlated Dg’s in other zone axes. Although

the 3D distribution of the reciprocal vectors can be computed from the measured
OR, this was not done for individual cases, except for a few examples (in which the

O-lattice calculation was made). Strictly speaking therefore, the results presented in

Table 5 should be regarded as a test of the Dg rules against the available experi-

mental results, rather than a complete classification of systems with applicable rules.

The following outlines the shorthand notation used in Table 5:

1. ‘HP’ stands for ‘habit plane’, or prominent facet of a plate or lath-shaped precip-

itate; ‘F’ stands for ‘facet’, applied to precipitates whose interfaces include several
well-defined facets; ‘t¼ ’ stands for ‘the terrace plane is’, which is only applicable

to Rule III.

2. Subscripts ‘m’ and ‘p’ denote matrix and precipitate respectively; ORi
ði ¼ 1; 2; . . .Þ indicates a particular OR in a system in which more than one

ORs are observed; ‘n’ associated with F or ðnÞ associated with a rule indicates that

‘n’ numbers of equivalent facets that obey the same rule; i ð¼ 1; 2; . . .Þ indicates
different type of facets.



Table 5

Comparison of the Dg parallelism rules with experimental observations

Systems: precipi-

tate/matrix

Orientations of habit planes or major facets Dg Rules Reference(s)

Dg1 ¼ gm1 � gp1 Dg2 ¼ gm2 � gp2 g

Ni/Ag Fn f111gm � f111gp f111gp (n)I [114]

MgO/Pd Fn� 1-OR1 f111gm � f111gp f111gp (n)I [44,115]

Fn� 2-OR1 f200gm � f200g�p f200gp (n)I [44,115]

HPOR2 f111gm � f111gp f111gp I [115]

MgO/Cu Fn f111gm � f111gp f111gp (n)I [44,115]

MnO/Cu Fn-OR1 f111gm � f111gp f111gp (n)I [116]

HPOR2 ð111Þm � ð111Þp ð111Þp I

Mn3O4/Ag HP f111gm � f222gp f111gp I [117]

Mn3O4/Pd HPOR1 ð111Þm � ð222Þp ð111Þp I [118]

HPOR2 ð002Þm � ð004Þp ð002Þp I

g0-Al2O3/Cu HP f111gm � f222gp f111gp (n)I [119]

A-Al2O3/Nb HP ð110Þm � ð0006Þp ð0003Þp I [99]

ZnO/Pd HP ð111Þm � ð0001Þp ð0001Þp I [120]

Al3Sc/Al alloy Fn f200gm � f200gp f100gp (n)I [10]

VC/c-steel Fn f111gm � f111gp f111gp (n)I [121]

MnS/c-steel HP ð002Þm � ð002Þ�p ð002Þp I [121]

Fn� 1 f200gm � f220gp f220gp
Fn� 2 f220gm � f400gp f200gp

Mo/Mo5SiB2 HP ()3 3 0)m ) ()2 1 1)p (1)1 0)m I [69]

d-Ni3Nb/Ni alloy HP ð111Þm � ð020Þp ð020Þp I [33,122]
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Table 5 (continued)

Systems: precipi-

tate/matrix

Orientations of habit planes or major facets Dg Rules Reference(s)

Dg1 ¼ gm1 � gp1 Dg2 ¼ gm2 � gp2 g

TiN/Ni Fn-OR1 f200gm � f200gp f200gp (n)I [42]

HPOR2 ð111Þm � ð020Þp ð020Þp I

HPOR3 (1)1)1)m ) (2 0 0)p ð020Þp I

HPOR4 (1 1)1)m ) (1 1)1)p ð020Þp I

HPOR5 ()1 1 1)m ) (0 2 0)p ð020Þp I

Ag/Cu HP ()1 1 1)m ) ()1 1)1)p (0 0 2)m ) ()1 1 1)p II [123]

Cr/Cu F1-OR1 (1 1)1)m ) (0 1 1)p [22,23,86,124]

F2 -OR1 ð111Þm � ð110Þp ð110Þp I [22,23,86]

F3 -OR1 ()1 1 1)m ) (1)1 0)�p [22]

FOR2 ()1 1 1)m ) (1 1 0)p (2 0 0)m ) ()1 0 1)p II [86]

FOR3 ()1 1 1)m ) (0)1 1)p ð200Þm � ð020Þp II [86]

Cr/Ni HP ð111Þm � ð011Þp (0)2 0)m ) (1)1 0)p II [17,24,92]

a/b(Zr-Nb) HP (1 0 1)m ) (1 0)1 1)p (2 0 0)m ) (0 1)1 2)p II [21]

(Ti,V)N/Ti-V-N

alloy

F1 ()1 0 1)m ) ()1)1 1)p [125]

F2 ()1 1 0)m ) ()1 1 1)p ð110Þm � ð111Þp II

c-TiH/Ti HP (0 1)1 0)m ) ()1 1 0)p (1 0)1 0)m ) (2 0 0)p ()1 1 0)p I + II [126]

c-ZrH/Zr HP (1 0)1 0)m ) (1 1 0)p (1)1 0 0)m ) (2 0 0)p ð110Þp I + II [63]

b0/Al alloy HP ð111Þm � ð111Þp (0 0 2)m ) (1 1)1)p ð111Þp I + II [127]

Ti3SiC2 /TiC HP ð111Þm � ð0008Þp (1 1)1)m ) (1 0)1)2)p ð111Þm I+ II [128]

c0/Al-Ag HP (1 1)1)m ) (0 0 0 2)p (0 2 0)m ) (0)1 1 1)p
(0 0 2)m ) (1)1 0)1)�p

ð0002Þp I + 2II [129,130]

h0/Al alloys HP ð002Þm � ð002Þp ð202Þm � ð202Þp
ð022Þm � ð022Þ�p

ð002Þp I + 2II [124,131]

Ti(CN)/TiB2 HPOR1 ð0001Þm � ð111Þp (0 1)1 0)m ) (1 1)1)p ð0001Þm I+ II [132]

Fn-OR1 {2)1)1 0}m ) {2)2 0}p {2)1)1 0}m
HPOR2 (0 1)1 0)m ) (0 0 2)p (1 0)1 0)m ) ()1 1 1)p (0 1)1 0)m I + II
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Mo5Si3/MoSi2 HPOR1 ð002Þm � ð220Þp ð220Þp I [81,133]

HPOR2 ð002Þm � ð220Þp ð110Þm � ð112Þp t ¼ ð220Þp III

Mg7Al12/Mg-Al F1�OR1 ð0002Þm � ð033Þp ð011Þp I [85,134]

F2�OR1 (1)1 0 0)m ) (0)3 3)p (0)2 2 0)m ) ()6 3 3)p t¼ ()2 1 1)p III [85]

F3�OR1 ()1 0 1 0)m ) ()4 1)1)p [85]

HPOR2 (1)2 1 0)m ) (3)3)6)p (1)1)2)p I [134]

Fe3C/c-steels HPOR1 (1)1 1)m ) (2 0 0)p (1)1 3)m ) (4 0 4)p
ð311Þm � ð240Þ�p

t ¼ ð101Þp 2III [66,96]

HPOR2 ð002Þm � ð200Þp (1 1)3)m ) ()3 0 3)p
(2)2 2)m ) (2 4 0)�p

t¼ ()1 0 1)p 2III [94,96]

S/Al alloy HPOR1 ð002Þm � ð023Þp ð001Þp I [135]

HPOR2 ð020Þm � ð002Þp ð022Þm � ð062Þ�p t ¼ ð021Þp III

Ge/Al Fn-OR1 f111gm � f111gp f111gp (n)I [136]

F1-OR2 (0 0 2)m ) ()2 2 2)p ð202Þm � ð042Þp ()1 1 1)p I + III

F2-OR2 (0 4 0)m ) ()2 2)4)p (2 4 0)m ) (0 4)4)p ()2 2) 4)p I + III

Ti5Si3/TiAl HP ð111Þm � ð0002Þp ()1 1 1)m ) (2)3 1 1)p ð0001Þp I + III [137]

b1/Mg alloy HP (0)1 1 0)m ) ()2 2 0)p (2)2 0 0)m ) ()2 2 4)�p ()1 1 2)p I + III [138]

Al2Ti/Al24Cr9Ti27 HP ð002Þm � ð0012Þp ð202Þm � ð2012Þp ð004Þp I + III [68]

X/Al alloy HP ð111Þm � ð004Þp (0 2 0)m ) ()2 0 2)p
(0 0 2)m ) (1)3 1)p

ð001Þp I + 2III [127]

H/Al alloy HP (1)1 1)m ) (0 0 0 2)p (2 0 0)m ) ()2 2 0 1)p ð0001Þp I + III [139]

Q/Al alloy HP (2 0 0)m ) (4)5 1 0)p (0 2 0)m ) ()4)1 5 0)p (1)1 0 0)p I + III [140]

NiHfSi/NiAl-

0.5Hf

F1 ð111Þm � ð400Þp (0 1 0)m ) (1 0)2)p ð200Þp I + III [141]

F2 ()1 0 1)m ) (0 2 0)p ()1 1 0)m ) (0 1)3)p ð020Þp I + III
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3. Superscript ‘*’ indicates that the particular Dg was not observed, but its existence

can be deduced by extending the array of spots in the reported diffraction patterns

or by calculation.

4. The indices for crystal planes in the original reports have been adopted. They are

given in the crystal reference, either in a 3- or 4-index convention.

The results in Table 5 demonstrate that in a wide range of systems the crystal-

lography obeys at least one Dg parallelism rule. Most of the precipitation systems in

Table 5 follow Rule I, i.e. the habit planes or major facets of the precipitates are

parallel to a low index plane in at least one crystal. These rational singular interfaces

are readily understood, as may be expected from surface energy viewpoint. At the

same time, many systems that obey Rule I also follow one or more rules, indicating a

strong tendency for the precipitation crystallography to obey Dg parallelism rules,

wherever this is permitted by the lattice constants. It is always the interface obeying
two rules that defines the habit plane, although other rational planes, from the same

precipitate and matrix, could also be parallel to each other in a given rational OR.

This arrangement is due to the prevailing singular structure in the interface that

obeys two optimum conditions and cannot be solely understood from a surface

energy viewpoint.

While in most cases only one prominent facet (the habit plane) is found, in some

special systems two or more equivalent interfaces follow the same rule(s), with an

embedded particle being enclosed by equivalent singular interfaces. In other exam-
ples, secondary facets may be developed in addition to the interface(s) that obey the

rule(s). These facets may follow a different rule, or they may also be defined by Dg’s
that are not parallel to the other measurable reciprocal vectors. As discussed earlier,

the facet defined by a single Dg is singular only with respect to the IO, while the OR

is fixed by the Dg parallelism rule(s), with or without a supplementary constraint. In

a few alloy systems, several different ORs may coexist, each being consistent with

Rule I. Though the variety of the observations in one system can be explained from

the Dg approach, why a unique OR is observed in one system and several distinct
ORs coexist in other systems remains to be a challenging question.

Interfaces resulted from other types of phase transformations, e.g. eutectics, eu-

tectoids and discontinuous precipitates having lamellar structures appear to follow

Dg rules but have not been included in Table 5. The flat interfaces in lamellar

structures have been found to obey at least one Dg parallelism rule. Examples include

NiO/ZrO2 [142], c/B2 in Ti–Al–Mo alloy [143] and M7C3 pearlite structures [144]. In

an as-cast eutectic Cr–Cu alloy, the broad facets of the lath-shaped Cr particles are

also normal to parallel Dg’s [145]. Though eutectic reactions are out of the scope of
the present work, the OR between the solid phases is likely to be governed by

principles similar to those considered for the precipitation reactions. On the other

hand, some precipitates with needle or rod morphology also obey a Dg parallelism

rule, e.g. needle-shaped particles in a quenched Zr–Nb alloy [106], and rod-shaped

Cr2Nb precipitates in a Cr alloy [146]. Since well-defined facets have not been

identified from these precipitates, these cases have not been listed in Table 5.
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However, agreement with the Dg parallelism rules suggests that an optimum inter-

facial structure might nevertheless be developed in these systems.

5.4. Discussions on the Application of the Dg Parallelism Rules

While the Dg parallelism rules, plus supplementary constraints, can lead to discrete

coordinates for singular interfaces in the BGP space, the possible combinations of

different rules with supplementary constraints still leave open a number of choices.

However, our comparison does indicate that certain types of systems tend to follow a

particular rule. The tendencies summarized below may provide some guidelines that

help to limit the plausible precipitation crystallography in a given system. The possible

deviation of real systems from strict satisfaction of the rule(s) will be also discussed.

5.4.1. Selections of singular interfaces

Though preference for a particular rule is not strictly predicable, singular inter-

faces that obey more than one rule should take priority, because these interfaces

satisfy two optimum conditions simultaneously, which are presumably associated

with deep energy cusps. It is convenient to rank the order of preference using the
classification in Table 1. Depending on the appropriate preferred state, priority for

realization of the singular interfaces should first include those that follow three rules,

i.e. AI or AII; then those that follow two rules, i.e. BI, CI, CII, BII, and FII; and finally

those that follow only a single rule. Therefore, when two or more rules are permitted

by the lattice constants of the two phases, a prediction of the crystallography is

possible, since the number of such interfaces in the BGP space is limited.

When only a single rule is applicable, preference for a particular rule would de-

pend on which of the optimum conditions, described in Section 3.4, has the domi-
nant effect in the given system. Among the three rules, Rule I is the most general.

Any system, whether the lattice misfit is large or small, always has the freedom to

follow this rule. Rule I will be realized, when the first optimum condition prevails or

the second optimum condition is not feasible (For example, when the primary misfit

strain is isotropic, the rank of T is constantly three and no invariant element can be

solved). The majority of interfaces that follow Rule I (Table 5) belong to the first

case. These systems contain a ceramic phase with directional covalent or ionic bonds,

so that the strong influence of the chemical component of the interfacial energy
results in dominance of the first optimum condition over the others.

Though rational habit planes form the majority of the observations in Table 5, the

small, but persistent, rotation away from a rational OR, and the irrational orien-

tation of the interface plane itself in several well-characterized systems, can also be

interpreted consistently in terms of parallelism of two Dg’s. (The relative paucity of

these observations is probably related to the facet that irrational habit planes are

found in only a minority of the precipitation systems studied so far.) Preference for

formation of interfacial steps in a singular interface is due to a dominant tendency
for realizing certain characteristic structures, described by either the second or third

optimum condition. A system consisting of phases of metallic solid solutions (with

small misfit) tends to prefer Rule II, since the chemical component of the interfacial
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energy in such systems is not expected to be strongly anisotropic. These systems

probably obtain a large reduction in the structural component of the interfacial

energy at a small expense in the rise of the chemical component due to the steps. This

hypothesis is consistent with a recent atomic simulation of the interfacial energy for a

(1)2 1)f habit plane in fcc/bcc Ni–Cr alloys by Chen et al. [147], where the chemical

contribution to the interfacial energy was found to be less than 20%. Rule III is
preferred to Rule I for a system of large misfit, where a compromise between dense

CCSL points and small secondary misfit in the interface can be achieved by the

formation of interfacial steps. Again, this occurs only if the balance between the rise

of chemical component and the reduction of the structural component of the

interfacial energy is in favor of the steps. Systems consisting of an intermetallic

compound and a metallic phase may tend to obey this rule, provided that the surface

energy of the compound phase is not strongly anisotropic.

In special systems where the terrace planes defined in different phases have
identical spacing, an OR can satisfy Rules I and Rule III simultaneously, and the

terrace planes for the stepped interface that obey Rule III are parallel to the rational

crystal planes that obey Rule I. The interface in Fig. 15d is a typical example for this

special case. In this system, two sets of Dg’s obey Rule III and they are symmetrically

equivalent. If they were not symmetrically equivalent, the one type of steps may be

preferred than the other, and the resultant stepped interface would likely follow Rule

III. However, because of the symmetry preference cannot be made for any set of Dg’s
(so an arbitrary one is chosen for illustrating the stepped interface). It is likely that
up-and-down steps are equally developed. In principle, the development of the

stepped interface is mainly governed by the third optimum condition, though the

first optimum condition may appear active. In the microscopic scale the interface

follows Rule III, but the average interface orientation follows Rule I. In real systems,

the case in Fig. 15 is rare. However, it remains possible that a structure is micro-

scopically controlled by the third optimum condition but macroscopically controlled

by Rule I. As discussed in the following subsection, any ideal singular structure that

can only be present in systems of special lattice constants might be developed in
other systems with a residual long range strain being allowed. When the terrace

planes defined in different phases have different spacing, up-and-down d-steps may

be developed with a residual misfit strain between the interplanar spacing being

tolerated elastically at each step, so that the overall misfit in the interface is

minimized [132]. This residual misfit strain is alternating and is not in a long

range, but it is not accommodated by the secondary dislocation associated with

the step. Such an up-and-down step structure is also favored when wrong bonds

between intermetallic compounds can be avoided [81,133]. Because of the differ-
ence in the interplanar spacing, the OR between the phases only follows Rule I,

but the interface contains d-steps, that are usually present in an interface following

Rule III.

Fig. 14 schematically summarizes the influences of various conditions on the

tendency of a precipitation system to obey a particular Dg parallelism rule. It is

hoped that this empirical chart will provide some guidelines for investigations of

precipitation crystallography. According to the guidelines, together with the avail-
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Fig. 14. A chart schematically summarized the influences of different conditions on the selection among

the possible Dg parallelism rules.
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able crystallographic data and the nature of the chemical bonding in a given system,

one may be able to deduce the Dg parallelism rule applicable to a system and to

identify the possible singular interfaces correspondingly.

Although the knowledge of active rules greatly limits the possible crystallography,

there are still a number of candidates of singular interfaces, each of which can follow

a selected rule. Which one Dg, or a set of Dg’s, should define the singular interface in

a given system is not always obvious. In principle, the preferred singular interface
should be the one in which the deviation from the preferred state (i.e. the primary or

secondary misfit strain) is small. The misfit distribution can be investigated by a

systematic study based on the O-lattice, or an appropriate CCSL. Therefore, though

a calculation may be avoided for interpretation of precipitation crystallography, it

must be used for prediction of plausible precipitation crystallography. Such an ap-

proach requires only the input of lattice constants of the two phases. It may serve as

a first step for a fast and rough quantitative search for the possible precipitation

crystallography in the 5D GBP space, before more sophisticated (physical) models
are tried. The result of the misfit distribution might also be used to suggest the

possible morphology of the precipitates, which is a critically important microstruc-

tural feature for engineering materials. When the model lattice is properly deter-

mined, the predicted precipitation crystallography and morphology can potentially

be applied to microstructural design, both guiding and accelerating the development

of materials with improved properties.
5.4.2. Possible tolerance of a small long-range strain

Although a singular interface that obeys two rules should most likely be favored,

in practice, however, strict satisfaction of two rules is unlikely. Simultaneous
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satisfaction of two rules is equivalent to the condition that two pairs of directions

from different phases are parallel. As explained earlier, two pairs of parallel direc-

tions in a general system must be dependent (for example, a rational OR is defined

by a pair of parallel planes and a pair of parallel directions in the parallel planes), so

that they only define three degrees of freedom, rather than the four degrees that

would be defined if they were independent. However, if we allow the lattice
parameters to vary, more degrees of freedom become available and satisfaction of

multiple rules is possible. In this hypothetical space of higher degrees of freedom, one

would be able define a set of points corresponding to strict satisfaction of two rules

that are presumably associated with deep energy cusps. If the lattice parameters of a

real system are close enough to those that are associated with a deep energy cusp, the

singular interface in the real system will contain the structure that is permitted by the

condition of two rules, albeit at the expense of a small degree of long-range strain. A

common example of strained singular interface is the elastically forced coherent (AI)
interface around small precipitates (in Al–Sc alloys for example), whose morphology

is also influenced by the strain energy [10].

More general singular interfaces that satisfy two optimum conditions (or one

condition twice) may contain a single set of periodic dislocations (Table 4). The

prevailing singular structure in these interfaces can also be realized, in a slightly

strained form. Those cases in Table 5 that have been identified by multiple rules

may not strictly satisfy the corresponding rules if their lattice constants are used

for calculations. However, allowing a certain degree of residual long-range strain
to be tolerated, the corresponding habit plane in each case probably contains the

singular structure associated with satisfaction of multiple rules. Singular structure

may also be realized in different facets when a small amount of long-range strain

is tolerated. For example, an interface can consist of several facets in the zone

axis of the invariant line, with a facet following Rule I and another following

approximately Rule II [22,23] though the lattice constants in the system do not

permit satisfaction of two rules simultaneously. Other habit planes, which do not

follow multiple rules, may also carry some residual long-range strain. When the
total energy is taken into a thermodynamic consideration, the present of a

certain degree of residual long-range strain, with the spacing of the interfacial

dislocations being smaller than the value determined from a long-range strain

free state may be preferred [148]. It is also possible that some parts of the

interface will carry a long-range strain greater than that in the other parts. The

surface relief effect associated with precipitates in some systems [104,149–151]

provides evidence of the existence of long-range strain. Similar to the surface

relief effect associated with martensitic transformations, the habit planes of the
precipitates are usually undistorted, i.e. they are macroscopic invariant planes.

This means that the habit plane itself in this situation can be regarded free from

a long-range strain.

The degree of long-range strain that can be tolerated varies from one case to

another. In practice, a long-range strain usually exists in the course of precipita-

tion, especially when the precipitates are small. The strain may diminish with the

growth of the precipitates, as the strain is affected by the balance of total energy
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(interfacial energy and strain energy). Therefore, the long-range strain that can be

tolerated depends not only on the deviation of the equilibrium lattice constants

from the ‘‘ideal’’ constants for the prevailed singular structure and the depth of the

associated energy cusp, but also on the precipitate size and the details of the

precipitation process. The singular structures in Table 1 can be considered as ideal

structures corresponding to energy cusps. When derived with the long-range strain
free assumption, these structures are permitted only when at least one Dg paral-

lelism rule is followed (Table 4). Once a long-range strain is allowed, the

satisfaction of the rules may not be strictly observed. However, since the residual

long-range strain virtually enhances preservation of a singular structure, an ob-

served habit plane or facet should be normal to the near parallel Dg(’s) or g’s. It is
convenient to take the allowable extent of a possible long-range strain of the same

order of magnitude as the experimental uncertainty in the diffraction patterns.

Thus, the association between the singular structure and habit planes can be
examined by visual inspection of parallelism of Dg with other Dg’s or g’s, as was

carried out for construction of Table 5. However, minimization of experimental

uncertainty is always desirable for quantitative description of the precipitation

crystallography. 21
5.4.3. Possible scattering of precipitation crystallography

A true scattering of OR’s and of habit plane orientations has been reported,

especially in metallic systems that exhibit an irrational crystallography [27,86,152].

When the scattering of precipitation crystallography is due to residual strain during

precipitation, as discussed in the above, the scattering must be somehow related to

the size of the precipitates, and the precipitation crystallography must converge to a
unique description for well-developed precipitates. However, there might be other

causes for the variation of the transformation crystallography. Although any change

in the parameters describing the crystallography of a singular interface may cause the

interfacial energy to rise, the persistence of the singular interface against perturba-

tion is likely to vary with direction in the BGP space. Since constraints in different

directions are normally not equivalent, the partial derivatives of energy with respect

to any change in direction (i.e. the slope of the Wulff plot at the cusp) will not be

identical. Under these circumstances one might expect some experimental scattering
to be found in one or more of the parameters needed to define the precipitation

crystallography.

When two rules can be applied simultaneously, the energy cusp associated with

the singular interface is likely sharp with respect to any direction in the BGP space,

and the probability of scattering to occur in the OR or the facet orientation is ex-

pected to be small. If a singular interface is restricted by a rule together with a

supplementary constraint, the chance of some deviation from the condition imposed
21 Since a precise Dg can only be measured at the cross point of Kikuchi bands associated with the

correlated g’s, Kikuchi lines will be particularly useful for a systematic and accurate measurement of Dg’s
for a given system.
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by the supplementary constraint may be larger than any deviation from the Dg
parallelism rule. While the supplementary constraint of parallel low index directions

imposes clearly specified crystallographic requirements to the OR, any criterion that

makes use of the dislocation spacing is less rigorous. Provided that a local minimum

of interfacial energy is associated with the maximum spacing of the dislocations in a

DI interface, the local minimum may be rather shallow since the dislocation spacing
changes only gradually with a change in the OR. In addition, the dislocation spacing

is often observed to vary in the habit plane, suggesting that a small deviation of the

average dislocation spacing from the optimum value likely occurs. This implies that

the OR and habit plane normal for a DI interface might display some scattering

along a line defined by Rule II in the 5D BGP space. This argument might help to

explain the scattering found in the OR and habit plane in those systems that exhibit

an irrational crystallography. On the other hand, as discussed in Section 5.2, when

the dislocation spacing is not significantly larger than the atomic spacing, selection of
the OR according to the dislocation spacing may not be justified and selection

condition may become uncertain. Several DI interfaces, selected by using various

conditions, corresponding to different Burgers vectors can be determined in a small

range of OR for a given fcc/bcc system [98]. However, whether each combination of

a condition and a Burgers vector is associated with a shallow local energy minimum

requires further examination.

5.4.4. Information extended from the Dg parallelism rule(s)

While the principal application of the Dg parallelism rules lies in the quantitative

interpretation of observed precipitation crystallography, the unambiguous identi-

fication of the Dg parallelism rule(s) can be extended to provide further insight into

the precipitation crystallography. The optimum condition(s) that govern the
development of the precipitation crystallography may be deduced from the effective

parallelism rule(s) and any additional information from the system. For example,

in a two-phase couple that follows Rule I, the chemical component of the inter-

facial energy probably has a dominant effect. On the other hand, although the

interpretation of precipitation crystallography with the Dg parallelism rules does

not require any calculation or observation of the interfacial structure, knowledge of

the interfacial structure is essential to fully understand the precipitation crystal-

lography. When DgP-I’s are distinguishable (as those connecting the nearest low
index g’s in a one-to-one fashion), the interfacial structures for the habit planes can

be proposed by following the one-to-one associations of different combination of

the rules with the singular structures given in Table 4. Though systems in sec-

ondary preferred states are more complicated, one can also establish a one-to-one

relationship between different combinations of the rules with the singular struc-

tures, if any step in the singular interfaces is treated to be of the same type. The

interfacial structure can then be suggested based on the relationship and the

identified Dg parallelism rule(s).
In addition, the Burgers vector(s) of the interfacial dislocations can be suggested

according to the intrinsic relationship between DgP-I(’s) or DgP-II(’s) normal to the

singular interface and the Burgers vector(s) of the dislocations contained in the
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interface. For example, if a system follows Rule II once, the Burgers vector of the

single set of dislocations in the habit plane should lie in the planes defined by the gP’s

associated with the parallel DgP-I’s (Section 4.2). The theoretical result is particularly

helpful for experimental studies of interfacial structures, because experimental

confirmation of predicted Burgers vectors is often much simpler than an ‘‘ab initio’’

determination of the Burgers vectors, especially when secondary dislocations are
present.

More quantitative description of the interfacial structure usually requires a cal-

culation with a model lattice. The information available from the parallel Dg’s can be

used to guide the construction of proper model lattices, including determination of

the preferred state (in particular, the orientation of the parallel Dg’s will indicate the
plane for construction of the 2D CCSL for a secondary preferred state) and the

lattice correspondence for the transformation strain. Testing of calculated principal

planes in a model lattice with experimental results is straightforward when this is
done in terms of the Dg’s; any uncertainty in both calculation and experiment in the

comparison can often be avoided.
6. Other approaches and links described in the O-lattice

As briefly reviewed in the introduction, observations of precipitation crystallo-

graphy in different systems have been interpreted by various models. While the
present study emphasizes the roles of periodicity and singularity of interfacial

structure, together with the degree of misfit strain, in determining the precipitation

crystallography, other models address the same problem from different perspectives.

The present study has intended to integrate useful concepts developed from different

models. Many characteristic features proposed by different models can be accounted

for by using the present approach. In literature, one often finds that the same set of

observations can be interpreted by different models. It is convenient to use the

present approach as a link to discuss several broadly-adopted models. Our discus-
sion will also address the assumptions and approximations in the different models,

and the intrinsic similarities and differences between the models, to elucidate why

and in what circumstances these different models might yield equivalent results.

6.1. Symmetry-dictated criterion

Cahn and Kalonji [46] suggested the association of a symmetry-dictated energy

extremum with the OR and the morphology of a faceted precipitate. The extremum

corresponds to the parallelism of common symmetry axes, and may be a minimum, a

maximum or a saddle point in energy. According to the suggestion by Cahn and

Kalonji [46], when a symmetry dictated extremum is observed, the OR should cor-

respond to an energy minimum. Since the alignment of common symmetry axes will
result in a rational OR, the criterion of symmetry-dictated energy extremum (sym-

metry-dictated criterion) may explain the observations of rational ORs. While this

criterion emphasizes parallelism of the symmetry elements common to both
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crystalline phases, the present approach specifies parallelism of either gP-a and gP-b, or

gP-aCCSL and gP-bCCSL for rational habit plane (or facets) (Rule I). An observed ra-

tional OR and interface may be explained by both approaches, if the observations

meet the specifications in both approaches. While there are possible overlaps be-

tween the candidates suggested from the parallelism principal g vectors and that

expected from the symmetry parallelism, the candidates in the former case are
usually fewer than that in the latter. All candidates in the former case are associated

with local minima of energy in the present consideration, but those in the latter may

or may not be associated with local minima [46], and they may or may not be de-

scribed by Rule I. In this aspect, the candidates suggested by the present approach

are more concentrated. These candidates can be further narrowed according to the

degrees of the interfacial misfit. However, the present model assumes that the OR is

developed for the realization of at least one singular interface, whereas the symmetry

criterion is not subject to this assumption. Since the present survey has focused on
systems in which a well-defined habit plane (or facets) was observed, full consistency

between the model and the observations has been obtained. Whether some rational

ORs (e.g. those corresponding to precipitates with needle or rod shapes) can be

explained by the symmetry criterion but cannot be interpreted by the present ap-

proach requires further test. On the other hand, while the observations of rational

ORs may be explained by the symmetry-dictated criterion, the observations of

irrational ORs cannot be interpreted from this approach. In this aspect, the present

approach offers a more complete scope of applications, including both rational and
irrational ORs.

Though the symmetry-dictated criterion may not be general in determining the

OR, the relationship between the intersection group of symmetry with the precipitate

morphology proposed by Cahn and Kalonji [46] is completely general. When the

symmetry-dictated criterion is not applicable, the precipitate morphology is not

likely to carry any symmetry element from either crystal, unless the effect of the

structural component of the interfacial energy is negligibly small (then the symmetry

of one crystal with strongly anisotropic surface energy may have a dominant effect
on the shape of the precipitates). Once certain symmetry operations are common to

both crystals for a given OR, the morphology of the precipitate (and the interfacial

structure) must be in accord with the survived symmetry. Any correct prediction of a

model must be in agreement with this general and simple relationship. The results

from the present approach are consistent with this relationship. As emphasized in the

symmetry consideration [46], it is the bi-crystal crystallography, rather than the

crystallography of individual crystal lattices, that plays a crucial role for the present

analysis of precipitation crystallography. Each of the model lattices, which serve as
the basis in the present analysis, carries the information of the superimposed crystal

lattices. When the common symmetry elements can be found in an OR, these ele-

ments must be conserved in the model lattice. They will be inherited in the distri-

bution of the Dg’s, as the reciprocal vectors of the model lattice, and will be reflected

in the interfacial structure, as determined by the model lattice. The crystallographic

equivalent facets of a precipitate, determined by the equivalent DgP-I’s (or DgP-II’s),
should be in accord with the intersection point symmetry (Fig. 11). The information
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from DgP-I (or DgP-II) vectors not only indicates the surviving symmetry but also

specifies the orientations of the facets, which is an advantage over the symmetry

approach. In addition, the distribution of Dg’s (e.g. parallelism) and their magni-

tudes also carry information about the lattice misfit (e.g. as indicated by the density

of the O-points [83]) in the interface normal to the Dg’s. Because the relative values

of the interfacial energy cusps are probably affected by the lattice misfit, it is possible
to discriminate corresponding facets based on an analysis of Dg’s. For example,

when the symmetry consideration predicts a rectangular cross-section for a precip-

itate, the Dg approach can specify the orientations of the facets, and which facet has

a broad area, as the habit plane or the prominent facet.

Though the present approach is more quantitative, the simple and general rela-

tionship between the intersection group of symmetry with the precipitate morphol-

ogy is always valuable in analysis of the precipitate morphology. For example, by

examining the measurement of the OR and the precipitate shape against this rela-
tionship, one can quickly test the validity of the measurement, especially for iden-

tifying a small deviation from exact parallelism of symmetry elements. Furthermore,

one may be able to make useful suggestions for the crystal structure of unknown

precipitates simply based on the OR and the measured precipitate shape.

6.2. Parametric methods

Parametric methods explain or predict the precipitation crystallography by

finding minimum or maximum values of selected parameters [34–36]. Searching for

optimum boundary structures using a simple parameter was pioneered by Bollmann

and Nissen [35]. In their method, local minimum values of a simple parameter P
(where P is a function of bi=di, with di being the dislocation spacing and bi the
magnitude of the Burgers vector) were used to represent the interfacial energy.

Another parameter R, suggested by Ecob and Ralph [36], has been used for repre-

senting the energy, and is also a function of bi=di. Since primary dislocations are

assumed in these models, the primary preferred state is implied by the methods.

These parameters essentially serve as estimations of the primary misfit in different

interfaces, and their values were believed to represent the interfacial energy (i.e. the

structural component).

Applications of the parameters P or R have been based the O-lattice construction.
The results have shown that the minimum value of P or R corresponds to planes

containing two sets of dislocations, determined by two principal O-lattice vectors

[35,36]. According to the present definition, these are the principal planes of the O-

lattice. In the study of the precipitation crystallography, the potential local minima,

rather than the absolute values of P and R, are the most important. The results from

applications of the parameter P or R, concerning the principal O-lattice planes are

incorporated directly into the present approach, though our selection of the principal

O-lattice planes as the candidates for the singular interfaces was rationalized by a
different argument, namely the dislocation periodicity. Without using numerical

calculations, we identify all principal O-lattice planes directly from DgP-I vectors, the
reciprocal vectors of principal planes of the O-lattice. Despite that common results
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may be produced from either approach, the result of the principal planes of the O-

lattice suggested by parametric method is often incomplete. This is because the

parametric method employed the simplification that the lattice misfit is completely

accommodated by three sets of misfit dislocations, with non-coplanar Burgers vec-

tors. In real systems, the number of Burgers vectors usually exceeds three (e.g. there

are totally six Æ1 1 0æ/2 Burgers vectors for an fcc lattice). Therefore, some important
candidates for the singular interfaces might be missed due to this simplification. Even

if a useful principal O-lattice plane is determined via a correct selection of the

Burgers vectors, the dislocation structure may not be represented by the description

based on a simplified O-cell structure, consisting of just three sets of walls. The

complete O-cell structure should consist of the same number of walls as the possible

Burgers vectors [37]. Only when the O-lattice plane indeed contains only two sets of

dislocations, can the description of the dislocation structure from the simplified

method be valid.
Although the dislocation structure determined by the parametric methods is often

oversimplified, the values of P or R may indicate the relative densities of the dislo-

cations in the interfaces parallel to the principal O-lattice planes. The values of P or

R are determined as functions of the magnitudes of the principal O-lattice vectors in

the planes [35,36], and they should somehow reflect the densities of the O-points on

these planes. Because each O-point on a principal O-lattice plane should correspond

to a dislocation cell, the planar density of O-points could be used as a relative

measure of the density of the interfacial dislocations [83]. Since the calculation details
are different, the results of ORs predicted by different parameters may be different.

The results may also be different from the result expected from the g parallelism

rules. However, when the parametric methods are applied to select the optimum

boundary for a given OR, the selection is usually made among the principal O-lattice

planes, and the optimum boundary selected by different parameters from a set of

discrete values may be similar. For example, P and R were used to evaluate different

principal O-lattice planes in an fcc/bcc system, and each led to the same rank [153]. A

similar result can also be obtained from the magnitude of gP-I. As the reciprocal
vector, the value of 1=jDgP-Ij indicates relative density of the O-points in a plane

normal to DgP-I. Provided that the O-point densities in the different principal O-

lattice planes are significantly different, the same habit plane containing dislocations

of the lowest density could be distinguished from the principal O-lattice plane(s) by

the use of any one of the parameters, 1=jDgP-Ij, P or R. Among the three parameters,

1=jDgP-Ij is the simplest to calculate, and it is the only one that is measurable.

However, it should be remembered that such a comparison is valid, only if the O-

lattice is a point lattice in 3D.
A similar choice might be made from a still different parameter, the net Burgers

vector content, as suggested by Knowles and Smith [34]. The interface with a min-

imum Burgers vector content is defined by the plane containing two smaller axes in

the B ellipsoid, describing the misfit associated with any unit vector [34]. This

interface, as a plane of the smallest misfit, has not taken the discrete Burgers vectors

into consideration, and it may be close but not exactly identical to a principal O-

lattice plane containing periodic dislocations of the lowest density. The discrepancy
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of the interfaces predicted by different approaches could be quantitatively analyzed

in reciprocal space [83]. Let r be a general unit reciprocal vector. One can determine

Dr as the displacement associated with r by Eq. (7a). The plane with the minimum

Burgers vector content is normal to the Dr that has the largest magnitude [83]. On the

other hand, the plane containing the lowest density of dislocations may be defined by

the largest DgP-I [83], or by DgP-I=jgPj to be comparable with Dr, as DgP-I=jgPj is the
displacement associated with a unit vector gP=jgPj. The largest Dr based on a con-

tinuum approach rarely agrees with DgP-I=jgPj that can have only a discrete orien-

tation determined by the O-lattice construction. However, the difference between the

two vectors may be in the range of experimental uncertainty, if an observed irra-

tional habit plane is expressed in an approximate high index. While both approaches

may account for the observation indexed in a crystal basis, the validity of the models

can be distinguished by using measurable DgP-I’s.
It is implied by various parametric methods that the degree of lattice misfit, in

terms of dislocation density or net Burgers vector content, should have a dominant

effect on the determination of the habit plane. The present study has regarded the

degree of lattice misfit as an important factor in the determination of the precipi-

tation crystallography. However, the general predictability of any geometric

parameter remains in doubt. No simple and general parameter can effectively rep-

resent the interfacial energy over the whole range of possible lattice misfit in crys-

talline materials. Maximizing the dislocation spacing has been considered in Section

5.2 only as a possible supplementary constraint for a DI interface, containing a single
set of dislocations, as this does not always lead to a correct prediction of the habit

plane in fcc/bcc systems [24]. Considerations based on the dislocation density or net

Burgers vector content neglect: (a) the contribution of the chemical component of

the interfacial energy, (b) the topography of the interface at the atomic scale which

determines the microscopic distribution of the interface misfit, and (c) the possible

variation of dislocation core energy with the dislocation spacing, especially likely

when the spacing is small. Therefore, the validity of using a parametric method is

probably limited to metallic systems in the primary preferred state when the dislo-
cation spacing is considerably larger than the size of the dislocation core, as

neglecting the above factors may not significantly alter the order of the preference of

the singular interfaces. Real systems are often complicated, and any parameter must

be used very carefully. In the present study, the condition of maximum dislocation

spacing has been regarded only to define a possible shallow minimum in the inter-

facial energy, while the conditions imposed by the optimum conditions or Dg par-

allelism rule(s) have been considered to be associated with shape cusps in the

interfacial energy. It should be also recognized that the second optimum condition
does not necessarily lead to a reduction of dislocation density. For a given interface,

when the misfit strain in the direction along the invariant line vanishes, the misfit

strain in the direction normal to the invariant line will increase [24], so that there

might be no net effect on the dislocation density. In practice, it is also possible that a

realized habit plane may be associated with a local minimum rather than the global

minimum of interfacial energy. No matter what the absolute value of the interfacial
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energy is, the habit plane, as a singular interface, should be identified by the Dg
parallelism rule(s).

6.3. Invariant line criterion

As noted in the introduction, a large body of evidence suggests that an invariant

line plays an important role in the development of the OR in many alloys. The

application of the invariant line criterion to precipitation crystallography was first

emphasized by Dahmen in his systematic study of OR’s in various precipitation

systems in 1982 [16]. The earlier applications [74,154] of the invariant line criterion
for rationalizing ORs have shown a close relationship with the parametric approach

based on the O-lattice model [35]. The condition of an invariant line strain does not

uniquely define the OR, as an invariant line can be produced in numerous ORs [84].

However, if the calculation is restricted to two dimensions, a single invariant line is

uniquely predicted. This approach was used by Dahmen to rationalize the obser-

vations from different precipitation systems, limiting the invariant line to lie in

parallel close packed planes in the two crystals [16]. The precipitates in the applicable

examples were mostly transition metal carbides or nitrides, and their experimental
ORs with the corresponding metal matrixes were reported as being rational. While

the selections from among the rational ORs are in good general agreement with the

OR predicted from the invariant line criterion, further testing using precise experi-

mental data is required to decide whether a strict invariant line truly exists with the

OR (which is usually irrational) predicted from the invariant line calculation, or

whether otherwise, the OR in a selected system is strictly rational (with the selection

of parallel in-plane low index directions among possible candidates probably being

governed by the small directional misfit criterion [100]). While the 2D model has the
advantage of being simple and providing an analytical solution of the OR, it is

limited to systems in which the close packed planes are parallel. Moreover this

method alone only predicts the possible ORs, not the habit planes. Unless the lattice

constants are special, the invariant line predicted from a 2D model does usually not

satisfy the O-line condition. The 2D model will yield an invariant line that only lies in

the parallel close-packed planes. This restricted invariant line is not always sup-

ported by experimental observations, though the precision in the measurement of the

OR does not often allow a close examination of the parallelism.
An alternative approach, adopted by Luo and Weatherly [17], determines the

invariant line in a Ni–Cr system from a three dimensional calculation, using the

observed OR (K–S) in an fcc/bcc system. These authors also showed that the habit

plane corresponded to an unrotated plane of the transformation, and contained the

invariant line. They determined the candidates for the invariant line from the

intersection points of the initial and final cones of the unextended lines, associated by

the Bain strain. Their result is consistent with the observed invariant line inclined to

the conjugate planes, which is presumably parallel to the long axis of the precipitate
lath. However, while the invariant line must be at an intersecting point between the

initial and final cones of the unextended lines, as an intersecting point to define an

invariant line, the vectors from different lattices meeting at the intersecting point
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must be related by the Bain strain. As noted by the authors [17], not all intersecting

points can define invariant lines. The intersection points related by the K–S OR can

define invariant lines only when the lattice parameters are special [155]. Though the

observation of the K–S OR in the Ni–Cr system was reported [17], the strict K–S OR

for the lattice parameter ratio in this system does not permit realization of any

invariant line. On the other hand, the habit plane was observed to obey Rule II (e.g.
Fig. 12). The habit plane containing the O-lines could be obtained when the con-

jugate planes are rotated by 0.4� about the close packed direction from the K–S OR,

and in this case the resulting habit plane and the invariant line are in good agreement

with the observations [24,98]. Clearly, if this O-line OR is taken as the input in the

method for 3D calculation of the invariant line, the invariant line can be determined

from the intersection point between the initial and final cones of the unextended

lines. If the input OR carried some experimental uncertainty, say about 0.5�, the
invariant line determined by the intersection point will be close (or identical within
the experimental error) to the true invariant line, since the intersection point will

change smoothly with the small variation of the OR. This dependence explains why

the intersection point determined from the exact K–S OR, 0.4� from the O-line OR,

could give an approximate invariant line, close to the measured one [17].

The restriction of the Bain strain to the solution(s) of invariant line can be used to

test the observed OR and invariant line. For convenience we denote the displacement

associated with unextended line as a rotation displacement. 22 The starting OR may

be given by any rational OR, e.g. N–W or K–S. The necessary condition for a
rotation, R, to bring a particular unextended line into an invariant line is that the

rotation axis is normal to the rotation displacement associated with this unextended

line. While a particular invariant line can be realized by various rotations that fulfill

the above condition, usually each rotation axis is normal to two rotation displace-

ment vectors, and it can only render at most a pair of unextended lines into invariant

lines. Only when the rotation axis is an invariant line in reciprocal space, will all

displacement vectors lie in the plane normal to the rotation axis [73], and numerous

invariant lines may be produced through small rotations around the axis. In the Bain
correspondence, any vector in one of the conjugate planes (e.g. f111gf ) must be

correlated with a vector in the other conjugate plane (e.g. f110gb) and the corre-

lation is the same for both 2D and 3D calculations. If the conjugate planes remain

parallel and have different interplanar spacing, only the displacement between the

correlated inplane vectors will lie in the plane. Among them there may be zero, one,

or two rotation displacement vectors. Assuming that at least one rotation dis-

placement vector is available in the plane, its associated unextended vectors, the

potential invariant line, must also lie in the plane. Therefore, the requirement of
parallelism of the conjugate planes in a general fcc/bcc system will only yield the
22 The condition of invariant line is RA0xi ¼ xi or A0xi ¼ R0xi, where A0 is either Bain strain or

another strain before the rotation. The displacement caused by the strain and the invert rotation is same:

ðI� A0Þxi ¼ ðI� R0Þxi. Because the displacement due to any rotation must be normal to the rotation axis,

an invariant line can be realized by a rotation only if the rotation axis is normal to the initial displacement.
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invariant line lying in the conjugate planes, 23 identical to that determined from the

2D model [16]. On the other hand, a rotation around a pair of parallel conjugate

Burgers vectors does not necessarily cause an invariant line to form in the plane

normal to the rotation axis, as the planes normal to the Burgers vectors may not be

related by the lattice correspondence. When the Burgers vectors are not identical, i.e.

when they do not define an invariant line, only one (or two) unique rotation around
the parallel Burgers vectors can lead to an invariant line strain. This rotation must

allow an invariant line in reciprocal space to form in the plane normal to the Burgers

vector. The projection of the invariant line in direct space onto the plane normal to

the Burgers vectors must lie normal to the parallel displacement vectors (Dg’s) be-
tween the reciprocal vectors in the plane, but the angle between the Burgers vectors

and the invariant line will vary with the specific misfit strain field.

The following relationships may be concluded from the above analysis for the

condition of the conjugate planes being parallel. (1) Only in an ideal case in which
the conjugate planes have identical interplanar spacing, the intersection point pro-

duced from the 3D model [17] is a strict invariant line, which can have any orien-

tation depending on the specific OR. The 3D model may effectively produce an

approximate invariant line inclined to the conjugate plane, only if the conjugate

planes have almost identical interplanar spacing, as in a Ni–Cr alloy system [17]. (2)

In a usual case, the conjugate planes have different interplanar spacing, and the

possible invariant line only lies in the conjugate planes. If the invariant line was

observed to lie in the conjugate planes, the conjugate planes are likely parallel and a
2D model can yield correct result of the invariant line. More strictly, an angular

deviation must exist between the conjugate planes though it may be too small to be

detectable (Fig. 12), when an invariant line is observed (e.g. according to parallel

linear defects or the axis of precipitate lath) to incline with respect to the conjugate

planes. If a pair of Burgers vectors are parallel in the condition of the habit plane

containing an invariant line, usually these Burgers vectors should be that (defined in

the different phases) for the dislocations in the habit plane and should lie in the habit

plane. The OR and the IO of the habit plane can be determined by a 2D calculation
in the plane normal to the Burgers vectors.

In the application of the O-line criterion, or the second optimum condition, an

equilibrium periodic dislocation structure is assumed. How the misfit dislocations

were generated was not considered, though this factor may play a crucial role in the

preference of the Burgers vector. This important aspect has been emphasized in

several investigations by Dahmen and Westmacott [18,103,108]. In their analyses,

the invariant lines associated with coherent and semicoherent particles were different.

Considering the role of the slip plane in determination of the nucleation of the
dislocations along the invariant line, the invariant line was determined at the

intersection of the cone of unextended lines with a slip plane. The habit plane would
23 When conjugate planes have identical interplanar spacing, the plane normal will define the invariant

line in reciprocal space. Then different rotations around the plane normal will lead to various invariant

lines, and the 3D invariant line approach is strictly valid only for this special case.
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contain this invariant line and a tensile axis of the strain (possibly an unrotated

direction) [18,108]. On noticing the role of discrete Burgers vectors in determining

the crystallography of the semicoherent precipitates, Dahmen and Westmacott [108]

also suggested another condition for restricting the invariant line for precipitates that

have lost coherency. They postulated that the shear direction in the shear matrix (S)

decomposed from the invariant line strain (A ¼ PS, where P is a pure deformation)
must be determined by a Burgers vector. They argued that a shear loop is preferred

over a prismatic loop in the dislocation nucleation process. While both shear loop

approach and the O-line condition take the important constraint of the Burgers

vector into consideration, the details are different. The O-line condition focuses on

the habit plane, which should be accommodated fully by a single set of dislocations,

no matter whether the dislocations are dominated by screw or edge character. The

shear loop approach emphasizes the overall shear field, but it does not explain how

the pure deformation is accommodated in any part of the interface. On the other
hand, both approaches share one of two conditions in the PTMC, i.e. (1) the

invariant line must lie in the slip plane, and (2) the invariant line in reciprocal space

must be normal to the Burgers vector [101]. While the shear loop approach adopted

condition (1), the O-line condition is equivalent with condition (2). However, unlike

the decomposition in the PTMC, the relationship between the invariant line and the

slip plane was not specified in the shear matrix [108].

Although the arguments advanced for predicting invariant lines and semicoherent

habit planes vary from one model to the next, the results may converge, in agreement
with the experimental observations. For example, a habit plane containing a pair of

parallel small vectors in good match, plus an invariant line, fulfills the conditions of

several different models. If the small vectors define the Burgers vector, which is likely,

this habit plane is a DI interface subject to the supplementary constraint of paral-

lelism of small vectors, as discussed above. This habit plane itself will be an unro-

tated plane of the transformation [17], since it contains two unrotated directions, the

set of parallel vectors and the invariant line. The parallel small vectors may define a

tensile axis of a small strain (as implied in many examples [103]). In addition, the
habit plane could also be explained from approaches in terms of concepts other than

the invariant lines, such as the structural ledge model [27], edge-to-edge matching

model [156], discussed in later sections.

Although it is widely accepted that interfaces in many systems contain an

invariant line, there is as yet no general consensus as to what the controlling factors

are related to the formation of the invariant line. While an observed habit plane may

be explained by different models, the conditions in the models usually do not un-

iquely fix the ORs or the habit planes. The second optimum condition (or Rule II)
suggested in the present work also does not fully constrain the DI interface. It must

be recognized, as pointed out by Dahmen and Westmacott [18,103,108], that inter-

mediate states lying between a fully coherent state and a complete long-range free

state might be observed in practice. In addition, long-range strains arising from some

precipitations, especially in metallic systems (which are possibly associated with

invariant line strains), may remain after the precipitates have grown to considerably

large sizes. The existence of the long-range strain can be tested by observations of the
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surface relief effect associated with precipitates [149–151]. Nevertheless, how the

residual long-range strain might constrain the remaining degree of freedom in

determining the DI interface remains to be an open question.
6.4. Structural ledge model

The structural ledge model, proposed by Aaronson and colleagues [27–29], offers

an effective approach to understanding some observations of irrational habit planes.

In contrast to models that rely heavily on vector and matrix algebra, the structural

ledge model is mainly based on a graphical analysis. The clear and amenable pictures

from the model provide great help for many readers in visualizing why some

interfaces tend to have irrational orientations, and have been adopted in several well-

known books [11,157]. In the original proposed model, applied to fcc/bcc system, the

conjugate planes ({1 1 1}f and {1 1 0}b) are assumed to be parallel [27]. The habit
plane is then defined by a vector (in-plane) lying along a row of good matching

‘‘patches’’ within the parallel planes, and a second vector (the terrace vector) lying

along a row of good matching ‘‘patches’’ crossing different layers of the set of

parallel planes. The latter vector thereby defines the structural ledges. While the

terrace vector is fixed for a given OR, its combination with different in-plane vectors

leads to the prediction of various possible irrational habit planes. The habit planes in

different systems have been explained by this model [19,27,158]. Van der Merwe et al.

[78,79] conducted a detailed energy analysis of interfaces containing structural led-
ges. In describing the accommodation of misfit by structural ledges, they proposed a

cancellation criterion, i.e. the misfit in the terrace is cancelled by the ‘‘pattern ad-

vance’’ associated with the step, and were able to justify the occurrence of some

stepped interfaces in terms of the minimum energy requirements.

The graphical method of the structural ledge model is similar to the O-lattice

construction in 2D, since both involve overlapping of a pair of rational planes from

different lattices. As recognized by Hall et al. [153], the center of each good matching

‘‘patch’’ lying in the plane is located at an O-point. While a 3D O-lattice is formed by
interpenetration of two 3D lattices, the good matching ‘‘patches’’ in different planes

in the structural ledges are equivalent to a set of planes of 2D O-lattice stacked

according to the in-plane translation of the crystal points in different pairs of planes

[24,159]. In such a construction, the misfit between the spacing of conjugate planes

e.g., {1 1 1}f and {1 1 0}b in an fcc/bcc system, is neglected. By applying the standard

O-lattice translation formula [37], one can also determine the terrace vector d0,
24

which connects the O-point at the origin to the shifted O-point (or shifted origin) at

the center of the nearest good matching ‘‘patch’’ in the subsequent plane. It has
proved that the misfit associated with d0 is simply the misfit (Dd) between the in-

terplanar spacing of the conjugate planes in its normal direction k(unit vector), as

related by Eq. (3), i.e. d0 ¼ �T�1ðDdkÞ [24,159]. This result is understandable, since
24 The terrace vector d0 was called step vector in a previous publication [24]. It is more properly called a

terrace vector, and the step vector is differently defined in this paper.
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if the misfit Dd is zero, d0 will define a true invariant line, i.e. the terrace vector will lie

along the invariant line, as also noted by different authors [160,161]. If Dd were

neglected, as in the structural ledge construction, a line along d0 would define a row

of good (in-plane) matching ‘‘patches’’. It is recognized that structural ledges effec-

tively play a role in the compensation of the interfacial misfit [159], but the tacit

assumption that misfit dislocations can be replaced by structural ledges should be
exercised with caution. Since d0 is unique, one cannot find another set of structural

ledges to replace the remaining dislocations (unless an irrational invariant plane, or a

BI interface, is possible in the system).

In the consideration of the structural ledge model or the cancellation criterion, the

misfit normal to the terrace is either neglected or treated separately. In practice, this

part of the misfit may be present in different forms. The possibilities include (1)

planes remain parallel and meet at the steps with the misfit strain in the form of a

long-range elastic strain; (2) the misfit strain is relaxed by an additional set of dis-
locations; or (3) a small rotation is introduced to meet the geometric condition for

the planes matching at the steps. While the second possibility has been suggested by

different investigators [28,79], the structures corresponding to the cases (1) and (3)

may consist of a single set of dislocations. In the early growth stage of a plate, the

misfit between the parallel close packed planes might be accommodated elastically.

Then, the dislocation free direction may be defined by the terrace vector, or a forced

invariant line. The residual long-range strain field associated with the forced

invariant line at opposing faces of the plate may cause a spontaneous rotation as the
particle thickness, so that the close packed planes from the two phases can exactly

meet in an edge-to-edge fashion [162]. A small rotation has been allowed in recent

extensions of the structural ledge model, so that the corresponding habit plane

contains a single set of dislocations along the invariant line [29,159]. In practice,

cases (1) and (3) may both occur, for small and large particles respectively. An

intermediate state between the two extreme cases might also occur for particles of

transitional sizes.

The vector connecting the good matching ‘‘patches’’ lying in the conjugate planes
may or may not be a principal O-lattice vector, xO

i , as pointed out by Ecob and

Ralph (in terms of a unit vector of the O-lattice) [36]. If an xO
i is chosen for deter-

mining the habit plane in the structural ledge model, as was done by Hall et al. [153]

in a study of an fcc/bcc system, the interface is then determined by xO
i and by d0.

Such an interface can be expressed by Dgf2 2�4gf , which is the Dg associated with

planes normal to k and bLi , i.e. f22�4gf in an fcc/bcc system. When the O-lattice is a

point lattice, Dgf2 2�4gf does not define a principal O-lattice plane. If a particular

rotation around xO
i , which presumably remains unrotated, is added to let the con-

jugate planes to meet at the steps of the O-line habit plane, the OR will become close

to the condition required by Rule II. The rotation seems to cause the formation of

the invariant line, as the remaining interplanar misfit is now removed. However, in

the strict mathematic sense, the rotation may also slightly change the positions of the

good matching patches, so that d0 does not give an invariant line direction. Nev-

ertheless, when both Dd and rotation are small, the rotated OR could be very close

to the condition for a DI interface and the dislocation structures from the two
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approaches should be similar. Then, the Dgf2 2�4gf becomes one of the parallel DgI’s
normal to the habit plane.

Even if the rotation is not allowed, the resultant habit plane from the two ap-

proaches might also be similar when the conjugate planes have similar spacing. Fig.

12 can be used to illustrate this point. In this figure, the diffraction spots of the

conjugate planes are not distinguishable. Thus one may consider this OR to be the
K–S OR, i.e., no rotation between the spots for the conjugate planes. At the same

time, the association of the habit plane with parallelism of the measurable DgP-I’s is
obvious. If the OR were strictly the K–S OR, the two DgP-I’s would be almost

parallel to each other. The Dgf2 2�4gf vector, which must be normal to the plane

suggested by the structural ledge model, is not visible from the figure, but it should

also lie approximately in the direction of the nearly parallel DgP-I’s, as can be derived

from the figure by a linear relationship. Therefore, the habit plane can be described

by either the (nearly) parallel DgP-I’s or Dgf2 2�4gf . The fcc/bcc systems with the lattice
parameter ratio (af=ab) near 1.25, as in Fig. 12, have been studied by many inves-

tigators [17,22,23,27,28,153]. However, these systems are special. A recent systematic

study of this system [98] indicated that when the lattice parameter ratio is close to

1.25, the Burgers vectors for all possible O-lines always lie in the conjugate planes. In

this study, the conjugate planes have been defined by the pair of the most closely

oriented f111gf and f110gb, since usually none of such related planes can be par-

allel in the O-line condition. If a rational OR (in which the conjugate planes are

parallel) near an O-line OR is taken as the input for the structural ledge model, and
the habit plane resulted from the structural ledge model, Dgf2 2�4gf , could be close to

the parallel DgP-I vectors at the O-line OR. As the value of Dd approaches zero,

which occurs when af=ab ¼ 1.225, the angle between Dgf2 2�4gf and the DgP-I vectors
will vanish. Then, all DgI’s, including gf2 2�4gf , in the zone axis of bLi will be normal to

the interface that obey Rule II (Figs. 6 and 12). In this special case, many O-line

habit planes are possible. Because the special lattice parameter ratio permits different

xO
i to be solved from all of the three in-plane Burgers vectors [98], three O-line habit

planes will coexist, as resulted from the structural ledge model. When the O-line is
inclined to the conjugate planes, any interface containing the O-lines would be

strictly consistent with the descriptions of either the structural ledge model or Rule

II. For a system with a more general lattice parameter, the OR for the O-lines

corresponding to each Burgers vector is distinct. This is different from the structural

ledge model, which can predict different habit planes for the same OR, because the

model virtually neglects the effect of Dd.
Despite some limitations due to simplification and special requirement, the con-

cept of the structural ledge model has drawn attention to the distribution of good
matching patches as a critical factor in the structures of a singular interface and an

important role of steps on enhancement of overall good matching in the interfaces.

The energetic compromise between the introduction of steps and minimization of

interfacial misfit has been confirmed by van der Merwe et al. in a more sophisticated

energy analysis [78,79]. This useful concept has been extended recently in con-

struction of the good matching regions under more general conditions, as discussed

in the following section.
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6.5. Near-coincidence site model

Liang and Reynolds proposed the model of near-coincidence sites (NCS) [33].

Near-coincidence (the nearest atomic neighbor distance <15%) is another term for

good matching, where atomic matching rather than lattice matching is usually used.

It has been suggested in the NCS model that the OR should lead to the greatest areal
density of the NCS, and that the habit plane should contain the greatest area of

continuous NCS [33]. A unique advantage of the NCS approach is that it is easy to

adopt, since calculation of the NCS only requires input of the coordinates of the

atoms in the joining phases, and does not require knowledge of lattice correspon-

dence and matrix operation. In addition, the calculation is greatly facilitated by

advanced computer software. The NCS approach has been followed by a number of

recent investigations [163–167], confirming the association of the observed habit

plane or facets with densely distributed NCS.
While the principle behind the NCS model is essentially inherited from the

structural ledge model, the applicability range of the new model is greatly extended.

Unlike the structural ledge model, a 3D distribution of the NCS can be examined

without being subject to the selection of the terrace planes [164], although a pair of

conjugate planes can be suggested based on the high areal density of the NCS for a

given OR. Thus, the limitation of parallelism of any planes in the OR in the

structural ledge model can be removed. While the structural ledge model was mainly

applied to the primary preferred state, the NCS model is in principle applicable to
any system since the continuity of the NCS in an area (within an NCS cluster) can be

evaluated either on a strict one-to-one basis (for a system in primary preferred state)

or on a basis in which only a fraction of the regularly distributed points can be

regarded near coincident (for a system in a secondary preferred state). On the one

hand, the structural ledge model provides a dislocation description of the interface,

but the defects between the NCS clusters are unidentified. On the other hand, the

validity of the NCS model is not limited by the assumption of the Burgers vectors

lying in the terrace plane suggested in the structural ledge model.
A relationship between the NCS model and the O-lattice model will help to

determine the defects between the NCS. Both the NCS and the O-lattice are based

on the same construction interpenetrating two lattices in 3D. The O-lattice applies

when the pattern of good and poor misfit is periodic, while the NCS model is

applicable to any situation. However, when the NCS model is applied to investigate

a singular interface, which must contain a periodic structure, the two models should

yield similar result. A complete description of the regions between the adjacent

NCS clusters must be analyzed according to the preferred state. Consider first the
case in which a strict continuity of a one-to-one correspondence, as described by

the primary preferred state, is sustained within an NCS cluster. When the misfit

strain is general, i.e. rank(T)¼ 3, each good matching region must be centered at an

O-point, and the volume near the O-point will contain dense NCS. Whether the

NCS within an O-cell are considered continuous depends on the criterion for

evaluating coincidence, since possible atomic steps within the cell may be associated

with a relatively large local misfit. If the NCS clusters are confined within a certain
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close packed plane, the regions between the adjacent NCS clusters within an O-cell

may be separated by steps, or structural ledges. In this definition, the NCS clusters

connected by the steps only repeat within an O-cell. (When the OR permits the

formation of an invariant line strain, the clusters connected by the structural ledges

can repeat indefinitely, provided that the terrace vector is parallel to the invariant

line.) If various steps are allowed within an NCS cluster, a one-to-one relationship
can be established between each NCS cluster and a primary O-point. In this defi-

nition, the NCS clusters can repeat indefinitely, as the O-lattice points. If an

interface is determined by passing the adjacent NCS clusters, the interface is likely

(but not necessarily) parallel to a principal O-lattice plane, since the adjacent O-

points are usually connected by principal O-lattice vectors. Then, each region be-

tween a pair of adjacent NCS clusters will contain a primary dislocation, whose

configuration can be determined by the intersections of O-cell walls by the interface

plane (Eqs. (12)–(13)). In general, however, if the continuity of NCS within a
cluster of a considerable area is evaluated on a one-to-one basis, the regions be-

tween the adjacent NCS clusters may possibly contain: (1) a step without a misfit

dislocation characteristic, i.e., a typical structural ledge; (2) a primary misfit dis-

location only; (3) a primary misfit dislocation associated with a step; (4) a knot of

several primary misfit dislocations if the adjacent NCS clusters are not connected

by a principal O-lattice vector; or (5) a highly mismatched band that cannot be

defined by any primary misfit dislocation (then a secondary preferred state should

be considered).
If missing points are allowed within an NCS cluster (e.g, Fig. 12c in [33]), then the

identification of the defects in the regions between the NCS cluster are more com-

plicated, depending on the preferred state. If continuous NCS on the one-to-one

basis can be identified over an area whose dimension is at least several atomic dis-

tances, then the regions of poor matching, missed in the NCS configuration, may

contain a set of primary dislocations. The single flat NCS cluster that defines the

habit plane in a Ni–Cr alloy by Liang and Reynolds (in Fig. 12c in [33]) contains

many narrow continuous NCS bands. The example for Rule II is also taken from
this alloy system. The index for the observed habit plane in this system is usually

expressed as (1)2 1)f [17,43] at the K–S OR. The parallel Dg’s in the zone axes of

½10�1�fk½11�1�b in Fig. 12 are approximately perpendicular to (1 1 1)f , indicating

that their directions are close to (1)2 1)f . The calculated O-lines (a single set of

dislocations) in the habit plane for this system have the spacing of 0.97 nm [24],

which agrees with the distance (�1 nm) between the narrow NCS bands within the

flat cluster. Chen and Reynolds [43] have considered the neighboring NCS in the

(1)2 1)f plane to form a 2D CCSL cell, and virtually analyzed the habit plane with
the secondary misfit strain. Liang and Reynolds [33] have also neglected the defects

between the flat clusters of NCS, but expected defects between the broad and flat

NCS. According to the description of the O-lines, the periodic narrow bands of NCS

can be spread endlessly in the habit plane approximately parallel to (1)2 1)f , normal

to the parallel Dg’s (Fig. 12). The reason for the limited size of the flat NCS is that

the input OR for the NCS construction is very close but not identical to the O-line

OR. In this situation the unit cell of the O-point lattice becomes strongly anisotropic,
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elongated towards the small misfit (near invariant line) direction. According to the

O-lattice model for the rational OR, the border of the flat clusters should consist of

segments of dislocations of different Burgers vectors. However, the real OR may

have fulfilled the invariant line condition [17], though the measurement uncertainty

may cause the discrepancy in the OR, so that this complicated dislocation structure

is not present in the habit plane. As can be expected, if the O-line OR (0.4� from the
K–S OR) were input for the NCS construction, one would obtain the broad flat

shape of periodic NCS clusters over an unlimited area. Liang and Reynolds [33] have

attempted to modify a few factors in order to extend the NCS region in (1)2 1)f , but
none of the modifications is effective. Their introduction of dislocations has caused a

variation of the distribution of the NCS. According to the O-lattice construction, the

dislocations must be located at the poor matching regions (Figs. 2 and 4) and the

existence of the dislocations should not alter the distribution of the O-lattice ele-

ments.
The same consideration can be extended to systems with large lattice misfit. In

this case, a ‘‘unit cell’’ of the NCS will consist of missing points, or crystal lattice

points that are not near coincident. If each near coincidence site is forced to be-

come coincident, the unit cell of NCS will be equivalent to a unit cell of the CCSL.

One face of the cell likely defines the 2D CCSL for a secondary preferred state. In

such a system the region between the adjacent NCS clusters possibly contains (1) a

step which is either associated with a secondary dislocation (d-step) or not (when

crossed by a secondary invariant line); (2) a secondary dislocation which is not
associated with a step; (3) a band of highly mismatch that cannot be defined as a

single misfit dislocation. Various methods for determining near coincident site

lattice (NCSL) have been suggested in literature [40,43,132,168]. The description of

the interfacial structure from the model depends on the selection of the unit cell.

If the points in the adjacent NCS clusters are chosen to form a unit cell of the

NCSL, the defects discussed above would be contained within an NCSL cell.

Selection of an NCSL model implies a secondary preferred state in the interface.

The periodicity for this case is considered in two levels in the present approach. An
NCSL or CCSL should yield a small unit cell of 2D CCSL that is consistent with

the nearest neighbors of NCS within a cluster in a terrace plane, rather than across

the clusters. The unit cell of the secondary O-lattice consists of points (or lines)

from different NCS clusters. The defect structure is determined for the secondary

O-lattice model.

Depending on the criterion for the coincidence, the steps could be included within

or excluded from an NCS cluster. When an OR following Rule III is taken as the

input for the calculation of the NCS, the corresponding interface will contain peri-
odic and endless rows of NCS (with steps being allowed in the rows). When a

deviation from the ideal OR is carried in the input data for the OR, the habit plane

determined by passing the adjacent elongated clusters spread in a rather large area

should give a good approximate orientation of the habit plane defined by Rule III.

Rule III apparently agrees with the OR between d and c in a 718 alloy in the dif-

fraction pattern provided by Liang and Reynolds (Fig. 1 in [33]). The plane passing

the adjacent NCS clusters in Fig. 16 in [33] should be normal to a group of parallel
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Dg’s, but the experimental data was not sufficiently precise for a strict comparison. 25

Unlike the structural ledges which are not associated with discontinuity to the pri-

mary preferred state, the steps with respect to the terrace plane parallel to the 2D

CCSL representing the secondary preferred state should always be treated as defects

no matter whether the steps are included within an NCS cluster or not.

It must be recognized that the border between NCS clusters in an interface in the
primary preferred state may also contain a step associated with a dislocation.

According to the terrace plane with respect to the O-lattice structure, we may classify

the steps into two types. The first type of terrace plane (or facet) is parallel to a

principal O-lattice plane, which contains periodic NCS clusters. The misfit in terrace

planes is accommodated by the dislocations lying in the principal O-lattice plane.

The dislocation located at a step connecting the adjacent NCS clusters at different

levels of the terraces must have a Burgers vector that accommodates the misfit

associated with the riser of the step. These steps do not have regular spacing; their
distribution depends on the interfacial curvature. They are often called growth ledges

because their position change effectively causes the volume change between phases.

The second type of terrace planes is parallel to a pair of conjugate low index planes,

and each terrace plane contains a single O-element at the center of an NCS cluster.

The average interface is parallel to a principal O-lattice plane, having a unique

orientation. If the conjugate planes are parallel and have different interplanar

spacing, the Burgers vector associated with the dislocations at steps must be different

from those associated with the dislocations between the clusters in the conjugate
planes. This type of step is similar to the misfit compensation ledges suggested by

Furuhara et al. [19], but our conclusion on the Burgers vector is different from theirs.

In their model, the introduction of the steps effectively changes the average interface

orientation, but does not affect the Burgers vector of the dislocations. Our starting

point is that a long-range strain free interface containing periodic dislocations must

have a fixed orientation. It is determined by the relaxation of specific system whether

an irrational singular interface will be smooth in microscopic scale (containing fine

atomic steps), or will be decomposed into a sharp step-terrace structure, where each
step is associated with a dislocation. The spacing and the Burgers vector of the

dislocations are not affected by the ways of decomposition. The main difference is in

the step spacing. The spacing in the smooth interface depends only on the inclination

of the interface and the crystal structures, and that in the sharply stepped interface

depends only on the dislocation spacing. This is in contrast to the d-step structure,

for which the OR must allow the dislocation spacing to coincide with the step

spacing determined by the inclination of the habit plane.

While the NCS structure can be described in the framework of the O-lattice, the
criteria for the selections of the OR and the habit plane are not completely equiv-

alent. Local planar density of an NCS cluster is an important concern in the NCS
25 The experimental evidence supported the conclusion that the habit plane must contain the conjugate

direction of [1)1 0]c, but the reported average habit plane is (1 1.05 1.03)c, inconsistent with the above

result.
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model, which suggests an OR to produce the greatest areal density of the NCS in

some conjugate planes [33]. This simple criterion essentially confines the terrace

plane, but the OR in the plane is not precisely fixed, since the maximum density of

NCS within a local area can always be fulfilled with the OR varying in a small range.

A high density of NCS implies small unit cells. This criterion effectively suggests a

lattice correspondence for the interfacial strain. The habit plane suggested by the
NCS model should contain the greatest area of continuous NCS, but maximization of

the area is not considered in the optimum condition for the OR [33]. The areal

density of the NCS within a cluster and the area of a single NCS cluster can provide

an indication of a degree of interfacial misfit. These conditions are equivalent to the

considerations made for the preferred state and for the shape of an O-element. While

these aspects are important in optimization of the OR and IO, the present approach

emphasizes the singularity and periodicity of the O-elements in any singular inter-

face. Satisfaction of either the second optimum or third condition effectively ensures
each NCS cluster (including steps) to have an unlimited size in one direction, and the

endless NCS bands to spread periodically in the singular interface.

It is an advantage to combine the NCS construction with the O-lattice calculation

for singular interfaces. On the one hand, the NCS construction opens a transparent

3D view of the misfit distribution, which greatly helps in visualizing the misfit dis-

tribution in an irrational habit plane. Though the O-lattice can also be illustrated

graphically, it is usually limited to 2D in a rational plane (Figs. 2 and 4). For more

complicated cases, the O-lattice is determined through a ‘‘black-box’’ of a matrix
calculation. In addition, the ‘‘unit cell’’ of the NCS within a cluster, constructed at

an observed OR, can effectively suggest a proper lattice correspondence for the O-

lattice calculation. On the other hand, the uncertainty in the OR and IO measure-

ments may restrict the correct distribution of the NCS clusters over a large area. The

Dg parallelism rules can guide the selection of an appropriate OR that permits

endless bands of NCS. The dislocation structure between the endless NCS bands is

readily determined from an O-lattice calculation. A strict 3D distribution of the O-

elements is often unavailable when the singular interface contains an invariant ele-
ment. This drawback can be compensated by a construction of 3D NCS, since the

NCS distribution remains irrespective of the periodicity of the clusters. The distri-

bution of the 3D NCS may also provide useful hints for suggesting other facet(s)

than the O-line habit plane [165]. The possible dislocation structure in these facets

may be further derived through an O-lattice analysis.

6.6. Row matching model

The row matching concept was originally developed from investigations of epi-

taxial ORs. An epitaxial OR is developed between a substrate and a deposited film.

For the importance of film technology in modern industry, this type of ORs has been

extensively studied, leading to suggestions of various criteria, such as the matching of
close packed atomic rows (the ‘‘lock-in’’ model) [70,169], or the matching of close

packed directions [100], to explain the observed epitaxial orientations. Van der

Merwe [170] has proposed that energetically favorable epitaxial configurations occur
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when the matching of sets of parallel atomic rows from different lattices is realized.

Using a static distortion wave model, Fecht [70] has shown that energy cusps are

characterized by commensuration of reciprocal vectors defined in the interface, i.e.

normal to the atomic rows. The same approach has been applied to interfaces be-

tween precipitates and matrix. For example, Shiflet and van der Merwe [79] have

found that energy minima correspond to row matching for the N–W or K–S OR
between fcc and bcc phases, when their lattice parameter ratio meets the requirement

of the row matching. In his review article and book, Howe [12,15] also considered the

atomic row matching as a criterion in analysis of low energy interface and the

associated ORs in general crystalline interfaces.

The interface between a substrate and a deposited film is usually parallel to low

index planes in both lattices. This constraint is equivalent to Rule I. The row

matching criterion is equivalent to the condition that an interface must follow Rules

I and II or Rules I and III simultaneously. While Rule I ensures rows of dense points
to lie in the interface, Rule II or Rule III renders exact row matching. This rela-

tionship can be explained by using the property of Moir�e planes. Consider first a CI

interface, which follows Rules I and II. In the zone axes defined by the Burgers

vectors for the O-lines in the interface, one finds at least two sets of principal planes.

One set of planes, gP1, is parallel to the interface. The DgP-I1 vector associated with

this gP1, is parallel to gP1, normal to the interface. The DgP-I2 vector associated with

the other set of planes, gP2, is also normal to the interface, as required by Rule II.

According to the property of Moir�e planes (Fig. 5), the planes related by DgP-I2 must
meet in an edge-to-edge fashion in a Moir�e plane normal to DgP-I2. On the other

hand, the gP2 planes only meet the interface plane gP1 at every row of dense points

along the Burgers vector for the O-lines, and their related planes in the other lattice

are in the same situation. Consequently, the planes related by DgP-I2 should meet

each other at every row of dense points along the Burgers vector in the interface.

Therefore, the requirement of Rules I and II to be followed by an interface plus the

condition of parallelism of two Burgers vectors is entirely consistent with the crite-

rion of row matching.
While satisfaction of two rules is expected to define a shape energy minimum, its

application is limited to systems in which the lattice constants bear a special rela-

tionship between each other. In a more general system, few parallel rows can be

found in good matching condition in an interface parallel to low index planes. Kelly

and Zhang [32,156] have extended the association between the row matching and low

energy to the case of stepped interfaces using a model of edge-to-edge matching.

They found that the probability of row matching in a general system would be in-

creased by introducing steps to the interface. The interface plane is then determined
by two directions: the vector connecting the matching rows in different planes and

the direction of the matching rows, along parallel close packed or nearly close

packed directions. Their model still requires row matching condition to be fulfilled as

far as possible in the interface, while the edge-to-edge matching criterion is a nec-

essary condition for (approximate) row matching. They also require that the

matching planes should have almost identical interplanar spacing. In a systematic

manner, they could select the candidates of the matching pairs according to the
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interplanar spacing and suggest the preferred ORs, without examining the degree of

in-plane misfit [156].

It is a crucial condition for the matching planes to have almost identical inter-

planar spacing. Consider first an ideal case, in which the parallel principal planes

from different lattices have identical interplanar spacing, in the OR that a pair of

Burgers vectors from different phases lie parallel to define the direction of the
matching edges. This condition implies that the normal of the parallel principal

planes defines an invariant line in reciprocal space, and that the parallel Burgers

vectors are normal to this invariant line. This is an O-line condition, which ensures a

group of Dg’s to lie parallel. Though the edge-to-edge matching condition for the

parallel planes can be fulfilled in any interface inclined to these planes, row matching

can only be achieved in the interface normal to the parallel Dg’s, because edge

matching in common principal Moir�e planes is the necessary condition for row

matching. This argument can be explained using Fig. 6b, where knots of lines in the
same lattice represent the locations of edge-on rows of lattice points. The interface in

this figure follows Rule II; its mathematic position is indicated by a dashed and

dotted line in the figure. Three sets of (edge-on) principal planes from different

lattices all meet the edge-to-edge matching condition in the interface, the common

principal Moir�e planes. However, the related planes usually match at different

locations, unless a matching edge coincides with a row of points located in the

‘‘mathematic’’ interface. At each row a plane from different sets must meet. When

the interface has an irrational orientation with respect to both lattices, it only con-
tains occasional rather than regular matching rows in its mathematic position. If a

local relaxation is allowed, a band of elastically forced matching rows can be formed,

and a stepped interface connecting the forced matching rows can be defined. By a

rigid graphic method, approximate matching rows can be defined in the orientation

normal to the parallel Dg’s, as shown by Kelly and Zhang [156], leading to the

prediction of the habit plane. Usually, the vectors connecting approximate matching

rows will lie in different directions, and the geometric method may bring a certain

degree of scattering in the predicted habit plane.
For more general systems, in which the parallel planes from different phases do

not have identical interplanar spacing, Kelly and Zhang [156] have permitted a small

rotation around the parallel close-packed directions to accommodate small differ-

ence in the spacing so that planes can match at the interface. The further condition to

fix the habit plane or the OR is that the matching planes must meet at or approxi-

mately at matching rows. However, unlike the special case with a rational invariant

line in reciprocal space, approximate matching rows do not usually exist. If the

interface is normal to a single DgP-I, the edge-to-edge matching condition only holds
for this pair of related planes. Even when a row of lattice points is located at the

Moir�e plane, this row does not usually match with a row from the other lattice.

According to the analysis in Section 4.2, an interface parallel to the single principal

Moir�e plane will contain at least two sets of dislocations, which also accommodate

the misfit between the rows. On the other hand, as explained above, approximate

matching rows can be defined in the common principal Moir�e planes. Rule II with

the supplementary constraint of parallel Burgers vectors offers a simple restriction to
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fix the OR and the habit plane, the latter of which contains steps along the Burgers

vectors. The {1 1 2}f habit plane in an fcc/bcc system near the K–S OR is a typical

example of Rule II (Fig. 12). The edge-to-edge model [156] explains this habit plane

in terms of good matching rows at the edges (the steps) where nearly parallel con-

jugate planes meet (Fig. 5 in [156]). In contrast, good matching regions in terrace

planes are essential in the structural ledge model [27,28]. Similarly, the greatest
planar density of NCS in the parallel planes is preferred in the NCS model [33].

Nevertheless, given the same OR in the O-line condition with parallel Burgers vec-

tors, the habit plane orientations from different models should be consistent. In a

real interface, every row in the {1 1 2}f habit plane may become an elastically forced

matching row [91].

However, the row matching model, or edge-to-edge matching model, has ignored

the possible defects in the matching rows. The essence of interfacial structure con-

sidered from the O-lattice approach is the dislocation structure. Observations of
dislocations in numerous interfaces tend to support that it is the local elastically

forced point matching, instead of row matching, that controls the preferred state. As

stated earlier, a position of good atomic matching must be defined by three sets of

independent principal Moir�e planes. An interface defined by the row matching cri-

terion is parallel to only two sets. It must contain some regions in poor lattice point

matching along the matching rows. The graphical method of the NCS model is

particularly helpful for one to see how point misfit is distributed within each

matching row, and how good matching regions in different matching rows are
connected by an (approximately) invariant line in a {1 1 2}f habit plane (Fig. 12 in

[33]). Though the dislocations in the {1 1 2}f habit plane were not observed probably

because of the small spacing (�1 nm [24]), the direction of the invariant line, as the

axis of a lath precipitate, contained in the {1 1 2}f habit plane in a Ni–Cr alloy has

been reported repeatedly [17,43]. In general, the direction of the invariant line will

vary with respect to the matching row, depending on the details of the misfit strain

field. Theoretically, misfit displacement of any vector in the interface must lie parallel

to the direction of the matching row, i.e. the Burgers vector of the dislocations.
Therefore, the row matching condition may not be destroyed by the development of

the dislocations.

The row matching criterion is also applicable to systems in secondary preferred

states. The above analysis can be extended to these systems, but some modifications

should be added. One would also expect that in this case the matching rows will

contain dense CCSL points, and that may or may not be parallel to rows containing

the densest points in either crystal lattice. Exact row matching should be observed

from an interface when Rule I and Rule III are followed by the interface. Such a step
free interface must be normal to gP-aCCSL and gP-bCCSL, plus at least one Dg. Because
of linear combination, the interface should be normal to a group of parallel Dg’s,
including DgP-II’s and restored DgP-CCSL’s. It is often convenient to choose a restored

DgP-CCSL associated with a low index plane for describing the row matching condi-

tion. As explained for a CI interface, the planes related by this DgP-CCSL must meet at

the interface at rows of dense CCSL points. In contrast to a CI interface, not every

parallel row will find its counterpart in the other lattice, because the one-to-one
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nearest neighbor principle is not applicable to the related planes in this case. Usually,

only a fraction of parallel rows may match regularly their related rows in the

interface parallel to common Moir�e planes.

A stepped interface may contain elastically forced matching rows, if it obeys only

Rule III, and if the directions of dense CCSL points defined in different lattices are

parallel to serve the direction of the matching rows (the step riser). If the interface
contains a set of secondary O-lines, the row matching condition can be understood in

the same way as the interface following Rule II. However, the steps may be asso-

ciated with secondary dislocations whose Burgers vector is not parallel to the

matching rows. As demonstrated in Figs. 8c and 14d, the secondary dislocations are

defined in the framework of the CDSCL. Unlike the principal planes of crystal

lattices, where one finds a row of lattice points at every knot where planes meet, the

knots where principal planes in the CDSCL meet do not always define a row of

points of crystal lattice. Misfit between the CDSCL does not necessarily cause
mismatching between rows in crystal lattices. Instead, the translation of a secondary

Burgers vector associated with a d-step effectively causes a shift of the regular

partner relationship of near matching from one terrace to the next (Figs. 8c and 14d).

On the other hand, despite conservation of the forced row matching condition over

the interface, extra (or missing) planes may still be found at d-steps (Fig. 8c). When

Dg’s are not related by a fixed lattice correspondence, one can always find numerous

Dg’s in various directions in the same zone axis of the matching rows. The planes

related by the Dg’s that are not normal to the interface cannot match at the interface,
as demonstrated in Appendix A. In particular, because of the relationship defined in

the characteristic triangles (Fig. 8d) an extra plane should be associated with every

d-step, when the planes related by a non-parallel DgII are taken into consider-

ation.

The above results illustrated that some particular types of singular interfaces, i.e.

those follow Rule II or III with the constraint of parallel rational vectors, can be

identified or explained by the row matching criterion or its extended version of edge-

to-edge matching. While row matching can be treated as 1D preferred state, it is
considered here as a sufficient condition for a singular interface to obtain a structure

described in 3D (primary) or 2D (secondary) preferred state. Though evidence from

numerous systems can be found to support the requirement of parallelism of two

rational vectors of small misfit, this condition is not completely general, since cases

that disobey the condition have also been reported [21,22,152]. However, when two

low index directions are observed parallel in nearly parallel planes of similar inter-

planar spacing, the simple model of row matching is convenient for explaining the

observations of irrational habit plane and the associated OR. The application range
covers systems either in the primary or secondary preferred state, independent of the

lattice correspondence for describing the misfit strain [156].

6.7. General remarks

A common implication of all approaches reviewed above is that the observed

ORs and habit planes should correspond to low interfacial energy. However, the
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determination of the variation of the interfacial energy in the 5D BGP space for a

general system remains a challenging task from either a theoretical or experimental

perspective. Except for the symmetry approach, all reviewed approaches rationalize

the habit plane or facets in terms of some characteristic features in interfacial

structures, including the dislocation spacing, net Burgers vector content, an invariant

line, good matching patches connected by structural ledges, dense NCS clusters, and
(near) matching rows. While the detailed features are different, the results of the

models overlap with one another to some extent, because of the shared common

principle of optimizing good matching. A simple example in the overlapped zone is a

fully coherent interface in a low index orientation (i.e. AI interface), as it can be

interpreted by almost all models. Given an observed singular interface in a more

general system, various characteristic features have been proposed by different

models. Because the emphases placed by different models and overall constraints

applied to a system are not completely equivalent, predictions from the different
models may diverge when the characteristic structures suggested by different model

cannot coexist in a given system.

A typical example in the overlapped zone is the (1)2 1)f habit plane in a Ni–Cr

alloy. This observed habit plane has been explained by the 3D invariant line model

[17], structural ledge model [91], near-CSL model [43,92] and its modified version of

NCS model [33], extended row matching approach [156], and O-line model [24] or

Rule II. In this system the conjugate planes in different lattices have almost, but not

exactly, identical spacing (Fig. 12). As discussed earlier, the approaches of the 3D
invariant line model [17], structural ledge model [90], and extended row matching

approach [156] can apply mainly under this special condition. In addition to the

parallel Burgers vectors, another direction to restrict the habit plane in these models

is the vector connecting approximately matching rows [156], or is an approximate

invariant line, inclined to the conjugate planes. This approximate invariant line can

be determined by an intersection point between unextended cones [17] or a line

connecting good matching patches [90]. However, if the conjugate planes had exactly

identical spacing, the invariant line would become parallel to the Burgers vector. In
this case, the 3D invariant line and structural ledge models may fail to identify the

habit plane, because a single direction is not sufficient to define a plane. In this

special case, the NCS model [33], extended row matching approach [156] and O-line

model [24] remain valid, and these models should produce identical predictions of

the habit plane with the exact K–S OR. If the conjugate planes have obviously

different spacing, these three models are still applicable. The O-line model predicts a

rotation between the conjugate planes, with the supplementary condition of parallel

Burgers vectors, in the condition that the lattice parameters allow the O-lines to
form. With the K–S OR, the NCS (and equivalently the structural ledge model)

model will predict an interface containing at least two sets of dislocations [33], and

the 3D invariant line model [17] does not produce a true invariant line. If a true

invariant line is generated by an in-plane rotation (2D model), the predicted habit

plane will contain more than one set of parallel dislocations. However, given an O-

line OR as an input, the habit plane containing O-lines can be predicted by the NCS

model [33], 3D invariant line model [17], structural ledge model [90] and extended
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row matching approach [156]. In other words, characteristic structures suggested by

different models coexist in the habit plane containing the O-lines. Under the O-line

condition, preferences of different models may still differ, since the O-line solutions

are discrete but not unique. For example, areas of good matching patches in the

terrace planes should be optimized in the structural ledge or NCS model, dense

matching rows may be preferred by the row matching approach, without considering
the misfit between lattice points in the interface. The structural ledge model requests

that the Burgers vector of the dislocations lie in the terrace planes, but general O-

lines are not subject to this constraint.

The O-line structure represents the essence only in one type of singular structures

classified in Table 1. The present approach intends to identify singular interfaces

with their general features, in order not to lose generality. A general singular

interface is characterized by singularity and periodicity; it can be directly identified

by the Dg parallelism rules. Any one of the three optimum conditions can be applied
independently, so as to rationalize singular interfaces in different systems. For

example of an EI interface, this simple interface is often observed (Table 5), and is

accounted for by Rule I. However, it cannot be explained from criteria mainly

developed for irrational habit planes, such as the invariant line criterion or the

structural ledge model. The candidates for the singular interfaces can be further

discriminated by different supplementary constraints, such as parallelism of two

vectors of small misfit (as used in row-matching model), or low dislocation density

(as applied by parametric models). However, the supplementary constraints are not
considered general conditions for singular interfaces. When a supplementary con-

straint is considered as the prerequisite by a model, it also limits the application

range of the particular model.

It is worth noticing two classes of parameters used in evaluating interfacial fit/

misfit. While the parametric methods discussed in Section 6.2 addressed the density

of defects, as high energy contributors; the graphic methods in NCS and structural

ledge models focused on the good matching sites, as low energy contributors. In

principle, it is the good matching regions, the low energy features, that bring the
overall interfacial energy to a local minimum. When the dislocation spacing is

considerably larger than the atomic spacing, it may be valid to assume a homoge-

nous and periodic distribution of misfit displacement between the dislocations, as

described in a continuum dislocation theory. It is then reasonable to consider that

minimizing the density of interfacial defects is equivalent to maximizing the areas of

good matching. However, when primary misfit strain is rather large (towards the

fuzzy limit for the primary preferred state), the misfit distribution may not strictly

repeat from one dislocation cell to another. The interfacial energy may become very
sensitive to the misfit state in the region between the dislocations, rather than be a

simple function of the dislocation configuration. This situation can be more prom-

inent in a system in a secondary preferred state, since the interfacial energy is known

to depend strongly on the structure in the areas between the secondary dislocations

[39,52]. While investigation of interfacial structure in the atomic scale requires using

high resolution TEM and advanced modeling [171], misfit distribution and step

structure determined using rigid graphic methods can be particularly useful for
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investigating systems with large misfit strain. In this case, maximizing good matching

regions might become a more effective criterion than minimizing dislocation density.

This argument might explain the preference of some ORs, such as the K–S OR over

the N–W OR in some fcc/bcc systems, that cannot be explained in terms of the

dislocation spacing [24,98].

The models based on good matching criteria usually input the observed ORs,
though in principle these criteria may be used to search for the optimum results by

allowing the OR to vary. When the OR corresponding to the Rule II or III is typ-

ically irrational, systematic and numerical adjustments of the OR, which may in-

volves in a heavy calculation, may not yield the precise OR satisfying Rules. In this

aspect, the Dg parallelism rules are particularly practical and simple. However,

analysis using the reciprocal vectors alone does not present perceptible features in

interfaces. Using the input OR determined from the Dg parallelism rules, one gets the

periodic distribution of the NCS in the corresponding singular interface. It is pos-
sible to suggest qualitatively the configuration of defects in the singular interface

based on the relationships between the singular structures and the Dg parallelism

rules, and between the Burgers vectors of dislocations and the g(’s) associated with

the parallel Dg(’s). Though intricate task of constructing model lattices may be by-

passed at an early stage of an investigation, a more quantitative description of the

interfacial structure must be determined by a calculation with a model lattice. This

information is often useful for in-depth understanding of various properties of

interfaces. An advantage claimed by the models with graphic methods is the
avoidance of selecting the lattice correspondence, but a further advantage of the

methods is to guide the selection of a proper lattice correspondence with the atomic

structure in good matching regions, e.g. in an NCS cluster. When the NCS model is

combined with calculation of model lattices, as well as the Dg parallelism rules, one

gets the descriptions of a singular interface in the atomic, microscopic and macro-

scopic scales. The property of Moir�e planes provides useful links between the

descriptions in the three levels of scales.
7. Summary

In this paper we have presented a systematic analysis for precipitation crystal-
lography. While the approach has a strong geometric basis, the suggested discrete

singular interfaces help to rationalize the observations of particular OR and IO,

rather than their vicinal coordinates. The central hypothesis is that a habit plane or

major facet associated with a precipitation reaction is the physical realization of a

singular interface whose interfacial energy corresponds to a local minimum in the 5D

BGP space. Though the chemical component of the interfacial energy may influence

the choice of a specific precipitation crystallography, the structural component of the

interfacial energy is considered to be the dictating factor, responsible for a repro-
ducible, and often unique, OR.

The local minima of the structural component can be associated with a charac-

teristic structure of a singular interface. The common characteristics are periodicity
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and singularity. The periodicity, in terms of the (primary or secondary) misfit dis-

locations or structural units, ensures the low energy features to repeat over a variable

area in a singular interface. The singularities are specified by one or more of three

optimum conditions that require: (i) a singular interface free of interfacial steps, (ii)

elimination of dislocations in one direction and (iii) a set of interfacial steps and

secondary dislocations in coincidence. Combinations of different optimum condi-
tions, or repeated applications of a particular condition, result in twelve types of

possible singular structures. Any array of linear defects, dislocations or steps, in a

singular structure must fully accommodate the interfacial misfit in a particular

direction. While periodicity exerts the geometric requirement to fix the IO, the sin-

gularity imposes the constraint to restrict the OR, which may be further fixed by

various supplementary constraints. Though physical basis for these conditions was

discussed, the optimum conditions are largely empirical in nature.

Characterizing a singular interface with its structure (the microscopic description)
may often be a non-trivial task. It is often much simpler to identify the interface with

its characteristic IO and OR (the macroscopic parameters). Several model lattices:

the primary or secondary O-lattice, or the CSL, have been applied to establish and to

explain the links between the microscopic and macroscopic descriptions of various

singular structures. The geometrical condition for an interface to contain a periodic

structure is that it must be parallel to a principal plane in one of the model lattices,

represented by a measurable Dg vector. The OR of a singular interface must permit

this Dg to be parallel to one or more reciprocal vectors to provide the necessary
geometric condition for the singularity to be realized in the interface. The parallelism

relationships have been expressed by three rules for practical convenience. They are:

(I) parallelism of a Dg with a rational g; (II) parallelism of two principal primary

Dg’s; and (III) parallelism of two Dg’s, which applies interfaces in a secondary

preferred state. A comparison of these rules with a broad range of experimental

results suggests that naturally formed habit planes or facets have a strong tendency

to follow one or more of the Dg parallelism rules.

This work also reviewed other major approaches to the precipitation crystallog-
raphy and discussed their connections with the present one. Some singular interfaces

can be rationalized by different models. While the overall conditions proposed by

different models can be equivalent in special systems, some prerequisites suggested by

other models were taken as the supplemental constraints in the present approach. A

common optimum principle governing many models is that a singular interface

should exhibit good matching, but quantities for assessing the state of matching are

various. The present analysis has followed Bollmann’s dislocation description of

interfacial structure classified in terms of the preferred state. In common with the
division between small and large angle grain boundaries, the distinction between the

3D primary and 2D secondary preferred state has been specially emphasized for

providing correct descriptions of the interfacial defects and specified links between

the Dg parallelism rules and the singular structures.

The Dg approach can be particularly helpful at the beginning of any investigation

before the details of the interfacial structure or lattice correspondence are studied

experimentally or theoretically. The Dg approach can be joined with the NCS model
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to suggest the proper OR for construction of NCS in a singular interface, and to

deduce the possible characteristic features in a singular interface using the rela-

tionship between the Dg parallelism rules and the singular structures. However,

calculations with an O-lattice model are needed in order to provide a quantitative

description of the defects in the singular structure. The structure within an NCS

cluster may suggest the proper lattice correspondence for the calculation of the O-
lattice.
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Appendix A. Interfacial misfit in a simple stepped interface

A simple system is given as an example in this Appendix A to illustrate stepped

interfacial structure for the following points: (1) reduction of the overall interfacial

misfit by introducing steps; (2) different interpretations of the steps; (3) association of

Moir�e planes with the interfacial misfit. Fig. 15d has been constructed by overlap-

ping lattices a and b. For simplicity, there is no misfit in the vertical direction. The

lattice misfit along the horizontal orientation is so large that the system must take a

secondary preferred state. We have assumed that the 2D lattices repeat in the

direction normal to the paper and that there is no (or is a pure expansion or con-
traction) misfit along this direction, so that each row of lattice points can represent

an edge-on plane. Based on this assumption, we have also plotted the reciprocal

lattices for lattices a and b in Fig. 15b. The secondary Dg vectors are surrounded by

fine circles. The other Dg vectors have also been drawn for analysis of plane

matching in terms of the Moir�e planes.

Fig. 15a presents the structure of CCSLa for the system in Fig. 15d. In con-

structing the CCSLa lattice b is contracted slightly, while lattice a remains un-

changed. In the figure each CCSLa point is indicated by a circle with a center dot.
The CCSLa points are only contained in the alternating horizontal planes. Fine lines

have been drawn locally to indicate the CDSCLa. This CCSLa/CDSCLa structure

belongs to the second case classified in Section 3.4 for occurrence of the d-steps.



Fig. 15. (a) CCSLa and CDSCLa for system consisting of lattice a (open circles) and lattice b (solid cir-

cles); (b) reciprocal lattices of lattices a and b, where restored CCSL points are enclosed by larger circles;

(c) an illustration to show the definition of the step vector, v, and its associated displacement Dv and (d)

descriptions of interfacial misfit in the stepped interface (thick dotted line) in terms of d-steps and plane

matching.
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Namely, the planes containing dense CCSLa points and the planes containing dense

CDSCLa points are parallel, but the planes actually containing the small displace-
ment vectors that can bring a complete pattern shift do not lie in the same positions

as the planes of CCSLa.

The secondary misfit strain in the hypothetical system is a pure expansion in

direct space (from lattice a to b) along the horizontal direction. In this 1D strain,

the plane normal to the deformation direction is virtually a plane of invariant

plane. The secondary O-lattice consists of O-plane elements, which can be identi-

fied as the vertical rows of good matching points. The 1D secondary misfit strain

relationship in the system in Fig. 15 can be defined in a scalar form of transfor-
mation
2bb ¼ rba; ðA:1aÞ

r ¼ 18=17: ðA:1bÞ
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The spacing between the O-planes, or between the O-cell walls that are alternate

with the O-planes, can be determined from Eq. (11) or (12) in a scalar form for the

‘‘Burgers vector’’ of ba=4, which is the smallest CDSCLa vector in this direction:
dO ¼ ðba=4Þ=ð1� 1=rÞ ¼ 4:5ba: ðA:2Þ

In this special case, the reciprocal Burgers vector b�a is equal to 2ga4, which defines

a set of vertical planes of CDSCLa in Fig. 15a. dO can be given directly as 1jDg4j
[172]. This analytical result helps identification of the periodicity of O-planes or the

dislocation spacing with the Moir�e plane defined by Dg4, as specified in Fig. 15d.

Since all secondary Dg’s must be normal to the O-planes, the singular interface

suggested by the Dg parallelism rules (I and III) should be parallel to these secondary

O-planes, i.e. in the vertical orientation. One will reach the same conclusion from a
simple criterion of dense CSL points in the interface. However, a comparison be-

tween a horizontal (flat) interface and a stepped interface is the major concern here.

This will be discussed below.

A.1. Reduction of the overall interfacial misfit by introducing steps

According to the O-lattice theory any interface inclined to the O-planes will

contain a set of parallel secondary dislocations, located at the intersection between

the interface and the O-cell walls. An arbitrarily inclined interface is not considered

as a singular interface in terms of the dislocations structure, as discussed in Section

3.3. However, singularity in the interfacial structure can be defined when the crystal

structures are taken into consideration in the Dg approach. In the example in Fig. 15,

the interface is singular when it intersects the O-elements in the crystal plane, e.g. the

inclined interface indicated by thick dashed line. Because of the special inclination,
the dislocation spacing is identical to the step spacing. Therefore, the interface

contains a d-step structure. This singular interface must follow Rule III. It is normal

to a set of Dgk’s in characteristic triangles in Fig. 15b. It is also normal to a number

of restored DgP-CCSL’s, e.g. Dg11 and Dg23 specified in Fig. 15b. A stepped interface,

having its average orientation normal to a group of Dg’s, is indicated by a thick

dotted line in Fig. 15d. It can be seen, from the fine vertical lines in left part of the

interface in Fig. 15d, that each step is associated with a secondary dislocation with

the Burgers vector of the CDSCLa vector, ba=4. The projected dislocation spacing
onto the terrace plane is consistent with the spacing of the O-cell walls, or that of the

Moir�e planes defined by Dg4.
Consider next the step-free interface parallel to the horizontal row. The spacing

between the good matching points in the plane is double of the dislocation spacing

from the O-plane model. Although the CDSCLs from different sides of the interface

match well in the middle of the good points, it is seen from Fig. 15d that good

matching of CDSCLs may or may not define good matching of lattice points. It is

the latter that affects the interfacial energy. According to Fig. 15a, it is clear that the
smallest CDSCLa vector in the plane of the CCSLa is ba=2 rather than ba=4. Though
the 1D misfit strain is the same, the secondary dislocation in the flat interface plane

should be determined from the Burgers vector of ba=2. Therefore, the dislocation
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spacing corresponding to the increased Burgers vector is also doubled, i.e. it becomes

9ba. By assuming validity of the simple relationship between the energy and the

Burgers vector ðE � b2=DÞ for semicoherent interface, one would expect a reduction

of energy in the stepped interface, even though the dislocation density in the stepped

interface is higher compared with that in the flat interface.

Assuming that the preferred state is determined by the horizontal row of CCSL in
Fig. 15a, let us compare the deviation from the preferred state in the flat and stepped

interface containing the d-steps. One can compare the maximum interfacial misfit in

different interfaces. As a rough indicator, the maximum misfit can be evaluated by

half Burgers vector, which is especially true for cases with 1D misfit strain. The

maximum misfit is ba=4 in the flat interface, while it is ba=8 in the stepped interface.

Clearly, the fraction of good matching points, exhibiting small deviation from the

preferred state, should be higher in the stepped interface than that in the flat

interface. As also can be seen from Fig. 15d, the nearest NCS clusters are located in
the adjacent layer, instead of in the same layer, indicating that the stepped interface

consists of more good matching NCS than the flat interface. As a result of improving

overall matching condition, the stepped interface is likely preferred to the flat

interface in this system.

It must be noted that in this special case of the secondary invariant plane strain, it

is impossible to identify a DgP-II, to which the Dgk vectors in the characteristic tri-

angles corresponding to these steps are parallel. However, as suggested in Section

5.1, we may consider the DgP-II connecting ga0 and gb0 as a virtual Dg. This DgP-II can
be considered to be parallel to Dgk’s, but the differences between ga0 and gb0 in length

and orientation are too small for the DgP-II to be noticed. Therefore, a set of char-

acteristic triangles can still be constructed, as in Fig. 15b. The following consider-

ation also helps to understand missing DgP-II for Dgk’s to be parallel to. The

condition of a singular interface being normal to a DgP-II is to ensure periodic dis-

locations in an interface, while the characteristic triangles ensure coincidence of the

steps with the dislocations. When a DgP-II is a zero vector, it defines an invariant line

in reciprocal space. In addition, it is a condition for existence of two sets of O-lines,
though the actual secondary misfit strain could be an invariant plane (spacing of a

set dislocations approaches infinity as the case in Fig. 15) or invariant line strain (if

there is a misfit in the direction normal to the paper in Fig. 15). As discussed in

Section 3.3, when periodic O-lines or O-planes exist, the interface that is not parallel

to the O-lattice element will contain periodic dislocation. Therefore, when a DgP-II is
a zero vector, a periodic dislocation structure must exist.

Moreover, when the gstep in a characteristic triangle is given by either one of the g’s

associated with the virtual Dg, not only Dgk’s but also DgII’s in a row of characteristic
triangles are parallel to one another. All Dgk’s have identical length and hence all

characteristic triangles become identical. At the same time, it is possible to identify a

set of generalized characteristic triangles, whose edges consist of gstep, Dgk and a

general Dg. The general Dg’s in a row of characteristic triangles are also parallel to one

another. If the length of Dgk’s is identical to that of the parallel general Dg’s, as is the
case in Fig. 15b, both sets of parallelDg’s may equally define stepped interfaces, whose

inclination angles with respect to the terrace plane are identical. Since the stepped
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interfaces are symmetrically equivalent, the real stepped interface may contain up-

and-down steps, and the average orientation of the singular interface may not be

normal to either group of Dg’s. If the lengths of these two groups of Dg’s are different,
the orientation of interface normal to the larger Dg’s is closer to gstep. Compared with

the interface normal to the other group ofDg’s, the density of the steps in this interface

is lower, but the maximum misfit is larger. Among the three choices of interfaces
normal to different sets of parallel Dg’s, the frequent observations of the Pitsch OR

[30,66,109] tend to suggest that nature favors low density of steps.

A.2. Different interpretations of steps

Given a singular interface normal to a set of parallel Dg’s, the attribution of the

Dg’s depends on the construction of the CCSLa in 3D. The interpretation of the steps

is affected by the attribution. If we redefine the secondary strain so that Dg13 and

Dg23 become secondary Dg’s, then the same stepped interface is normal to all sec-

ondary Dg’s. Consequently, the same interface, indicated by the thick dashed line, is

parallel to a secondary O-plane. If the direction normal to the plane of paper is not
free of misfit, then the interface trace is parallel to a secondary invariant line.

Namely, the steps are crossed by a secondary invariant line. Though the redefined

CCSLa is not shown, its structure is identical to the lattice a in Fig. 15a. Namely,

every horizontal row contains alternating CCSLa points, and the smallest CDSCLa

vector is now ba /2. The secondary misfit strain is no longer pure 1D expansion. It is

characterized by a large shear displacement. While the nominated interfacial misfit

according to this CCSL model is low, the secondary misfit in the direction normal to

the interface appears rather high.
No matter how the steps are interpreted, the role of the steps is unique: The dis-

placement associated with the step cancels themisfit in the terrace plane, in which the 2D

CCSL should be preserved and undistorted as far as possible. The misfit associated with

a particular step is analyzed in Fig. 15c, where vector v is the step vector, and l is a vector

lying in the terrace plane. The vectors v and l are related by x ¼ vþ l, with x connecting

the nearest good matching points in the adjacent terraces. As can be seen from the

figure, the displacements from the nearest neighbors associated with v and l respectively

are identical in length ðjDvj ¼ jDlj ¼ 4ba=17), but opposite in direction. Consequently,
no net displacement is associated with x. If Dv and Dl are determined from the sec-

ondary misfit strain, x should define a secondary invariant line. This straightforward

interpretation of x corresponds to the redefined CCSLa, whose structure is identical to

lattice a. However, when the CCSLa in Fig. 15a is taken as the reference for defining the

secondary misfit strain, only Dl can be determined by the secondary misfit strain, but Dv
is a restored CDSCL vector. Its form in the constrained state is Dvcð¼ ba=4Þ, as indi-
cated in Fig. 15a. The cancellation condition requires the Burgers vector, bIIs , for misfit

dislocations associated with the d-steps be identical in length but opposite in direction to
Dvc. The secondary misfit associated with v is dðvÞ ¼ ðba=4Þ=17, as can be seen from the

displacement of the DSCL at the point defined by v in Fig. 15c. Then, the misfit dis-

placement associated with x is ðba=4Þ=17þ 4ba=17, which equals ba=4 and is consistent
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with the cancellation requirement. In this model of CCSLa (Fig. 15a) x defines a sec-

ondary O-element associated with the Burgers vector bIIs . In both models, x defines a

point of good matching.

While Dv is easier to visualize than dðvÞ, the construction of CCSLa in Fig. 15a

seems more reasonable than the one yielding a secondary invariant line, since the

secondary strain in the former construction is much smaller. An appropriate selec-
tion should be such that the periodicity of the 2D CCSL agrees with the preferred

state in the same terrace plane, and the secondary misfit strain associated with v

should be small. Namely, the Burgers vector should be close to Dv. For example,

because of the mirror symmetry in Fig. 15b, one can also define secondary O-lattice

planes, normal to the other set of parallel Dg’s (e.g. Dg22). According to this model of

CCSLa, steps in Fig. 15d will again be associated with the secondary dislocations.

However, the Burgers vector or Dvc is ba=2, which is significantly larger than Dv.
Therefore, this description of the d-steps is not appropriate.

A.3. Association of Moir�e planes with interfacial misfit

Since the experimental study of the step structure often requires high resolution

techniques, continuity of planes has often been examined so as to characterize the

steps. This method is adopted from studies of the interfaces in the primary preferred

state, for which discontinuity of coherence is an important indicator of the defects.

However, one must be careful when extending this method to the study of interfaces

in a secondary preferred state, since observations of an extra plane associated with

each step may or may not be consistent with conventional g � b practice. This is

another distinct property of interfaces in secondary preferred state, because the Dg
vectors in this case are often comparatively larger than the principal primary Dg’s,
which only connect low index g’s in the nearest neighborhood. The lattice corre-

spondence is unimportant when one defines g’s in a system in a secondary preferred

state. One particular g can relate to its different neighbors to form Dg vectors of

similar length, as can be seen from Fig. 15b.

Whether two sets of planes will match or not at an interface depends only on the

orientation of the corresponding Moir�e plane with respect to the interface, as dem-

onstrated in Fig. 5. Several sets of planes in the different lattices have been indicated
by lines in Fig. 15d: lattice a in solid lines and lattice b in dashed lines. Since Dg11 and
Dg23 (Fig. 15b) are normal to the selected interface, in the interface, parallel to their

Moir�e planes, the planes defined by ga1 (or 2ga1) should match with the planes defined

by gb1 /2 (or gb1), and so should the planes defined by ga2 (or 2ga2) with the planes

defined by gb3=2 (or gb3), as shown in different parts in Fig. 15d. Because the parallel

Dg’s connect gb with 2ga, rather than ga, only every other planes in lattice b find their

matching counterparts in lattice a. This interface would be considered ‘‘coherent’’ in

terms of these matching planes. Usually, as is the case for systems in the primary
preferred state, the Burgers vector of any dislocation in the interface is considered to

lie in the matching planes. This argument is valid only if the planes are related by the

misfit strain. For a system in a secondary preferred state, various Dg’s may not be



286 W.-Z. Zhang, G.C. Weatherly / Progress in Materials Science 50 (2005) 181–292
related by the secondary misfit strain, as in Fig. 15b. The Burgers vector of the d-steps

(Dvc) in Fig. 15d does not lie in the matching planes analyzed above.

Discontinuity of the related planes will occur whenever the associated Dg is not

normal to the interface. A discontinuity between two sets of planes will coincide with

the step, if the Dg connecting the related g’s can be defined in a generalized charac-

teristic triangle. Besides the above Dg, the edges of the triangle consist of a gstep and a
Dgk that are specified in Appendix B for a typical characteristic triangle. Such a

relationship ensures that the stepped interface intersects the Moir�e planes in the same

spacing with the steps. TheMoir�e planes defined by the Dg connecting gb2 and 2ga2 are

an example. As can be seen on the right part from Fig. 15d, there is a missing plane in

gb2 planes at the step. The same set of planes, with their g connected by different Dg’s
in a characteristic triangle, will exhibit a dual feature: matching (e.g. 2ga2 vs gb3) in the

whole interface or mismatching (e.g. 2ga2 vs gb) at the steps. When interface contains

d-steps, there exist numerous typical and general characteristic triangles in reciprocal
space, and many planes will possess the dual feature. Whether a set of planes will

match at an interface depends on which planes in the other phase are considered.
Appendix B. Dg Characteristic triangles

A Dg characteristic triangle is a useful device to describe an interface in which

coincidence of interfacial steps and dislocations can be realized, as required by the
third optimum condition. The definition of the Dg characteristic triangle is shown in

Fig. 16a. Two corners of the triangle are defined by reciprocal points of the larger

lattice (arbitrarily chosen as lattice b), in which the step height is defined, while the

third point is from the other reciprocal lattice. The edges of the Dg characteristic

triangle consist of gstep, Dgk, and DgII vectors, that must be specified by the following
d step
habit plane

step //

∆g

θ

h

∆g
II

∆g//
step

∆g
P-II

g
II

P- CDSCLα

P- CDSCLβ

(a)

b*

∆gg
g

g

O

(b)

Fig. 16. (a) Definition of the Dg characteristic triangle, where black and gray dots are reciprocal points

from lattices a and b, and (b) its relationship with the interfacial steps.
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conditions. These conditions ensure the step spacing to be identical to that of the

secondary dislocations in the singular interface normal to n.

(i) gstep, a reciprocal vector in lattice b, is parallel to gP-bCCSL, which defines the ter-

race planes of the stepped interface, and its inverse magnitude 1=jgstepj gives the
unit of the step height h. Namely, h ¼ i=jgstepj, with i being a small positive inte-
ger number.

(ii) Dgk is parallel to DgP-II, so that Dgk=jDgkj ¼ DgP-II=jDgP-IIj ¼ n.

(iii) DgII is a secondary Dg defined by DgII ¼ ðTIIÞ0gaCDSCL (Eq. (15)), in the condi-

tion that gaCDSCL ¼ ibII�s þ kgP-aCDSCL, where bII�s ¼ bIIs =jbIIs j
2
, bIIs is the Burgers

vector of the secondary dislocations associated with the steps, and k is a scalar

variable. gP-aCDSCL is related to bIIs by g0P-aCDSCLb
II
s ¼ 0, and it is associated with

the particular DgP-II normal to the singular interface.

For simplicity, we set the step height, h, in Fig. 16b equal to a single layer of

crystal planes parallel to the terrace plane of the interface, i.e. h ¼ 1=jgstepj. As can be

seen from the figure, the spacing of the steps can be determined from
dstep ¼ h= sin h ¼ 1=jgstep � nj: ðB:1aÞ
Similarly, if the step height is counted as i layers of planes i.e. h ¼ i=jgstepj, the step
spacing should be
dstep ¼ i=jgstep � nj: ðB:1bÞ
From the geometry of the Dg characteristic triangle one gets:
jgstep � Dgkj ¼ jDgII � Dgkj; ðB:2aÞ
or
jgstep � nj ¼ jDgII � nj; ðB:2bÞ
because of condition (ii). On the other hand, according to Eqs. (12)–(13) the dislo-

cation spacing is
dII
i-dis ¼ 1=jðTIIÞ0bII�i � nj: ðB:3Þ
According to condition (iii), we can express
DgII � n ¼ ðiðTIIÞ0bII�s þ kDgP-IIÞ � n ¼ iTII 0bII�s � n; ðB:4aÞ
or
i=jgII � nj ¼ 1=jðTIIÞ0bII�i � nj: ðB:4bÞ
Comparing Eqs. (B.1–B.4), one finds
dII
i-dis ¼ dstep: ðB:5Þ
Because the linear relationship between reciprocal vectors associated with Dgk and

gII, there exists a set of Dg characteristic triangles corresponding to various k values.

Examples of the Dg characteristic triangles in a diffraction pattern for a cementite/
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austenite system is given in Fig. 13a, with a corresponding plot in Fig. 8d [45]. The

corresponding model and the image of the habit plane have been shown in Figs. 8c

and 13b [45,66]. While the angle bounded by gstep and Dgk is invariant, the shapes of
the triangles can vary from one to the next. Due to condition (iii) stated above, all

associated gaCDSCL’s in these triangles must lie in one row (the dashed line in Figs.

16a, 7a and 8d), parallel to gP-aCDSCL and at a distance of ijbII�s j (i ¼ 1 in all figures)
from the origin. A case of h ¼ 2=jgstepj has been noticed in a recent study of a Mg-Al

alloy [173]. This condition can be used for identifying the Burgers vector from an

observation of a group of parallel Dg’s in an experimental diffraction pattern.

The step heights evaluated in the different lattices are often different. In this case,

there must be a rotation between gP-aCCSL and gP-bCCSL, so that a Dg connecting

mgP-aCCSL and ngP-bCCSL, having a similar length, can be defined either as DgP-II or Dgk
normal to the interface. According to the property of Moir�e planes in Fig. 5, the

planes defined by gP-aCCSL=n and gP-bCCSL=m should match at the steps because they
serve as the terrace planes (refer Fig. 6b). In addition, if mgP-aCCSL and ngP-bCCSL are

connected by DgP-II, b
II
s must lie in the terrace plane.
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