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Abstract-Samples of commercial-purity titanium, with and without 10 vol.% TiC particulates. were 
thermally cycled about the allotropic transformation temperature of titanium. Thermal ratcheting was small 
for both unstressed materials. Upon application of an external uniaxial tensile stress, unreinforced titanium 
exhibited large strain increments, resulting from the biasing by the applied stress of the volume mismatch 
developed between grains during the transformation. Upon repeated cycling, a strain to fracture of 200% 
was reached, with a strain per cycle proportional to the external stress, in agreement with existing 
transformation-mismatch superplasticity models. The metal matrix composite displayed transformation- 
mismatch superplasticity as well, with a strain to fracture of 135% and a strain per cycle significantly higher 
than for unreinforced titanium. This novel enhancement of superplastic strain is modeled by considering 
the internal mismatch between the transforming matrix and the non-transforming particulates. 

R&urn&Des Cchantillons de titane de puretk commerciale, avec ou sans 10 vol.% de particules de Tic, 
ont ttt cyclts thermiquement autour de la temperature de transformation allotropique du titane. La 
d&formation sans contrainte externe est minime pour les deux matiriaux. Sous contrainte exteme en tension 
uniaxiale, le titane non-renforc6 montre de grands incrkments de dkformation qui rksultent du biaisage par 
la contrainte appliquee du d&accord de volume pendant la transformation. Aprtrs de multiples cycles, une 
elongation ti la fracture de 200% a Bti atteinte, avec une deformation par cycle proportionelle B la contrainte 
exteme, en accord avec des models existants de superplasticitC par d&accord de transformation. Le 
composite ti matrice mktallique montre aussi de la superplasticit& par d&accord de transformation, avec 
une Clongation B la fracture de 135% et une deformation par cycle qui est nettement plus grande que celle 
du titane non renforck. Ce nouvel effet est modellis& en considkrant l’augmentation du d&accord inteme 
dti g la prisence de particules qui ne se transforment pas B 1’intCrieur d’une matrice qui se transforme. 

Zusammenfassung-Proben, die aus komerziell reinem Titan sowie Titan mit 10 vol.% TiC Teilchen 
bestehen, wurden urn die allotropische Umwandlungstemperatur von Titan thermischen Zyklen 
unterworfen. Die thermische Verschiebung im unbelasteten Zustand ergab sich als vernachllssigbar. Reines 
Titan zeigte unter einem einachsigem Spannungszustand eine betrtichtliche Verformung, die auf eine 
Ueberlagerung der iusseren Last mit der durch den Volumenunterschied der transformierenden Kiirner 
auftretenden inneren Spannung zuriickgefiihrt werden kann. Nach wiederholten thermischen Zyklen ergab 
sich eine Bruchverzerrung von 200%, wobei die Verzerrung pro Zylus proportional zur iiusseren Spannung 
war. dies in Uebereinstimmung mit der Fachliteratur. Der Metall-Matrix Verbundwerkstoff zeigte ebenso 
UmwandlungsunterschiedsuperplastizitBt mit einer Bruchverzerrung von 135% und einer im Vergleich zu 
Titan deutlich erhijhten Verzerrung pro Zyklus. Dieser neuartige Effekt der Erhijhung der superplastichen 
Verzerrung wird in einem Modell, das auf dem Volumenunterschied der transformierenden Matrix mit den 
nicht-transformierenden Teilchen basiert, dargestellt. 

1. INTRODUCTION 

Superplasticity in metals can be induced by two 
types of mechanisms [l-3]: grain-boundary sliding in 
stable, fine-grained materials (microstructural super- 
plasticity) and biasing of internal stresses or strains by 
an external stress (internal-stress superplasticity). For 
the latter type of superplasticity, internal stresses can 
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be produced in polycrystalline materials by volume 
mismatch between grains, as a result of: 

(i) anisotropic swelling upon irradiation, e.g. in 
uranium [4]; 

(ii) anisotropic coefficient of thermal expansion 
CTE (CTE-mismatch superplasticity), observed in, 
e.g. zinc, cadmium, zirconium and uranium [5-l 13; 

(iii) density change upon phase transformation 
(transformation-mismatch superplasticity), observed 
in, e.g. titanium, zirconium, iron, cobalt and uranium 
[12-191. 

If an external uniaxial stress is applied while the 
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volume mismatch exists, a net strain in the direction of 
the external stress results from the biasing of the 
internal stresses or strains [12]. Although the strain 
rate decays upon relaxation of the internal mismatch, 
the total strain is proportional to the externally-ap- 
plied stress. Upon temperature cycling, the internal 
stresses are regenerated for mechanisms (i) and (ii) and 
additional strain increments are produced; the average 
strain rate is proportional to the applied stress, leading 
to a high resistance to necking and thus high strains to 
failure. These materials therefore behave in a 
superplastic manner, independently of their grain size, 
in sharp contrast to microstructurally-superplastic 
materials, which necessitate a stable, fine-grain 
structure [l-3]. 

Superplasticity in metal matrix composites is of 
particular interest, since these materials are typically 
difficult to form, due to their low ductility at both 
ambient and elevated temperature [20,21]. Micro- 
structural superplasticity can be achieved in metal 
matrix composites, if the matrix is inherently 
superplastic, or if the matrix exhibits very fine grains 
stabilized by the reinforcement [21-241. As reviewed in 
Refs [21] and [25], internal-stress superplasticity can 
also be induced in composites by a mechanism similar 
to that operating in unreinforced metals with 
anisotropic thermal expansion [mechanism (ii) above]: 
when matrix and reinforcement exhibit different 
coefficients of thermal expansion, internal stresses are 
generated as a result of a temperature excursion. Upon 
thermal cycling with an external mechanical loading, 
CTE-mismatch superplasticity is observed in these 
metal matrix composites. The mismatching reinforce- 
ment can be in the form of particulates [26-321, 
whiskers [26,33-41], short fibers [42+], long fibers 
[4&48] and eutectic second phase [31,49, 501. 

In the present article; we investigate internal-stress 
superplasticity in a metal matrix composite, whereby 
the internal mismatch is induced by phase transform- 
ation of the matrix [mechanism (iii) above]. To the best 
of our knowledge, this is the first report of 
transformation-mismatch superplasticity in a com- 
posite. We compare the superplastic behavior of 
unreinforced titanium and titanium containing 
ceramic particulates, and discuss the results in the light 
of models based on biasing of internal strains and 
stresses. 

2. EXPERIMENTAL PROCEDURES 

Powders of commercially-pure, extra-low-chlorine 
titanium, with and without 10 vol.% equiaxed TiC 
particles of average size c. 20 nm, were consolidated 
into billets by cold-isostatic-pressing, followed by 
hot-isostatic-pressing. Processing conditions were 4 h 
at 1185°C at a pressure of 172 MPa for the composite 
billets, and 2 hat 900°C and a pressure of 103 MPa for 
the unreinforced billets. The resulting unreinforced 
and composite materials-respectively designated in 

what follows as CP-Ti and Ti-Tic+xhibited relative 
densities of at least 97 and 96%, respectively. 
Hourglass creep cylindrical specimens were machined 
to a gauge diameter of 6 mm and a gauge length of 
30 mm. Parallelepiped samples 4 x 4 x 47 mm in size 
were used for thermal ratcheting experiments. 

Constant load isothermal tensile creep experiments 
were performed at 1000°C under flowing high-purity, 
titanium gettered, argon gas, containing 4ppm 
impurities (including 0.5 ppm oxygen). Sample 
elongation was measured with a linear voltage 
displacement transducer outside the hot-zone, and 
temperature was monitored by a thermocouple 
spot-welded to the sample gage length. After 
stabilizing the temperature, the sample was loaded 
and allowed to creep until a steady-state creep rate 
was reached. The sample was then subjected to 
a higher load, and again allowed to reach steady- 
state. 

Tensile creep experiments under temperature 
cycling conditions were performed in the same 
apparatus used for isothermal creep measurements. 
Before cycling, steady-state creep was established at 
both the higher temperature of the cycle T,,, and the 
lower temperature of the cycle, Tdn. The loaded 
sample was then subjected to temperature cycles about 
the transformation temperature of titanium, between 
T,,, and Ttin. Two cycle profiles were used (Fig. 1): a 
1Zmin cycle between 830 and 960°C for CP-Ti, and 
a 15-min cycle between 830 and 1010°C for CP-Ti and 
Ti-Tic. Sample elongation was monitored during the 
whole cycle and sample strain was determined at the 
end of each hold period at Tti,, thus eliminating the 
contribution of thermal expansion of sample and load 
train. A total of five to ten readable, error-free cycles 
were used to determine the average total strain per 
cycle AE,~~ at a given stress. After cycling, steady-state 
creep at both T,, and Tti, was again established. For 
a given sample, the above procedure was repeated for 
a total of at most five, monotonously increasing stress 
values. Finally, a sample with 35 mm gauge length was 
deformed up to fracture using a shortened 6-min cycle 
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Fig. 1. Experimental thermal cycles: (a) low temperature cycle 
and (b) high temperature cycle. 
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between 830 and lOlo”C, with a hold time of about 
1.5 min at each of the extreme temperatures. For 
Ti-Tic a constant stress of 1.25 f 0.05 MPa was 
maintained by periodic load adjustments, while for 
CP-Ti the stress increased monotonously from 1.2 to 
1.6 MPa over the span of the experiment. 

Thermal ratcheting experiments were carried out by 
placing samples in the hot-zone without applied stress, 
while the thermal cycling tests were taking place: the 
ratcheting samples were thus subjected to the same 
thermal cycling schedule as the creep samples. Sample 
length was measured after the first cycle and at longer 
intervals thereafter. Dilatometric experiments were 
performed by cycling a sample once between room 
temperature and 1000°C under flowing argon. The 
heating rate was 3 K min ’ from room temperature to 
800°C and 1 K min - ’ up to 1000°C while the cooling 
rate was 0.2 K min - 1 from 1000 to 700°C and 3 K 
min - I down to room temperature. 

3. RESULTS 

Figure 2(a) and (b) shows the microstructure of 
as-received, undeformed CP-Ti and Ti-TiC samples, 
respectively. The somewhat porous TIC particles are 
well dispersed and exhibit in most cases a pore-free 
interface with the matrix. The grain size of CP-Ti 
samples is about 50 ,um and the matrix grain size of 
Ti-TiC about 20 pm, as determined by the 
line-intercept method on etched samples. Since, for 
both samples, the grain size is above 10 pm, 
microstructural superplasticity can be ruled out 
[l-3]. 

In Fig. 3, the minimum strain rate is plotted as a 
function of the applied stress during isothermal creep 
at 1000°C for CP-Ti and Ti-Tic. Strain to failure for 
Ti-TiC at 1000°C was 30%, for a final stress of 3 MPa. 
Figure 4 shows the longitudinal ratcheting strain 
accumulated as a function of the number of thermal 
cycles with no applied load. For both CP-Ti and 
Ti-Tic, the strain after the first thermal cycle 
represents between 70 and 95% of the total ratcheting 
strain accumulated after 49-78 cycles. However, when 
cycled under load, both CP-Ti and Ti-TiC exhibit 
strains in the direction of the applied stress, which do 
not decay as the number of cycles is increased. Figure 5 
shows the experimental average strain per cycle for 
CP-Ti cycled between 830 and 960°C and between 830 
and lOlO”C, which is proportional to the applied 
stress, as expected if transformation-mismatch 
superplasticity is taking place. Also plotted in Fig. 5 
is the average strain per cycle for Ti-TiC for cycles 
between 830 and 1010°C. While the linear relationship 
between strain and applied stress also holds for the 
composite, Ti-TiC exhibits strains about 75% higher 
than those of CP-Ti at a given stress. As shown in 
Fig. 6, the total engineering strain to fracture Lo is, 
however, smaller for Ti-TiC (tf = 135%) than for 
CP-Ti (cr= 200%, discounting about 20% elongation 
at the neck). 

Fig. 2. Micrographs of undeformed (a) CP-Ti (Kroll’s 
reagent) and (b) Ti-TiC (unetched). 

The wide temperature interval used during cycling 
experiments was dictated by DSC results [51], which 
showed that the allotropic transformation of the 
matrix started at 930°C for Ti-Tic. Most likely, the 
matrix contained the a-stabilizing elements oxygen or 
nitrogen, which shift both a-a + fi and a + /?-+/? 
transus temperatures to temperatures significantly 
higher than the allotropic transformation tempera- 
ture of pure titanium (T = 882°C) [52]. In contrast, 
the start of the transformation of CP-Ti was 
measured at 880°C [51], indicating negligible con- 
tamination. 
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Fig. 3. Minimum strain rate for CP-Ti and Ti-TiC as a 
function of applied stress upon isothermal creep at 1000°C. 

4. DISCUSSION 

4.1. Isothermal creep of CP-Ti and Ti-Tic 

Figure 7 shows that good agreement exists between 
the creep data at 1000°C for CP-Ti and the strain rate 
ipL predicted by the power-law equation [53]: 

where rr is the applied stress, k is Boltzmann’s constant 
and T is the temperature. The values of the 
pre-exponential constant, A = 105, the bulk diffusion 
coefficient at lOOo”C, D( 1273) = 0.1 pm% - I, the shear 
modulus at IOOOC, G(1273) = 15.34 GPa, the 
Burgers vector b = 0.286 mn and the stress exponent 
it = 4.3, are given by Frost and Ashby [53]. Only bulk 
diffusion is considered, since the calculated contri- 
butions of pipe- and grain-boundary diffusion are 
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Fig. 4. Cumulative ratcheting longitudinal strain as a 
function of the number of cycles for cycling experiments 
without applied stress. Two samples were measured for 

CP-Ti and Ti-TiC each. 
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Fig. 5. Total measured strain per cycle Acot as a function of 
applied stress for CP-Ti and Ti-Tic. 

found to be negligible [53]. Also shown in Fig. 7 are 
creep data measured on /I-Ti at low stresses-at 982°C 
by Lunsford and Grant [54] and at 1002°C by Oikawa 
et al. [55l_which are in satisfactory agreement with 
our results. Equation (1) is furthermore plotted in Fig. 
7 with materials constants by Oikawa et al. [55] 
(A = 8 x lo4 and n = 4.1), slightly different from 
those of Frost and Ashby [53]. Our data are in better 
agreement with equation (1) if the materials constant 
from the latter authors are selected, which we use for 
the calculations to follow. 

The stress and grain size ranges are low enough that 
diffusional creep iD must also be taken into account 
[53]: 

where 0 = 0.0181 run3 is the atomic volume and d is 
the grain size. The sum of the contributions of 
power-law and diffusional creep ipL + i. [equation (1) 
and equation (2)] is plotted in Fig. 7. The stress for 
which the contributions of each mechanism are equal 
is cr = 0.65 MPa, corresponding to the boundary 
between power-law creep and diffusional creep in 
Frost and Ashby’s deformation mechanism map [53]. 
The effective stress exponent in the vicinity of this 
border changes from n = 1 (diffusional creep) to 
II = 4.3 (power-law creep). 

In the relatively narrow stress range rr = OS-3 MPa, 
the stress exponent of Ti-TiC at 1000°C is n = 2.2 
(Fig. 3). Such a low value is unexpected, since most 
metal matrix composites in the power-law regime 
exhibit an apparent stress exponent which is larger 
than that of the unreinforced matrix (211. This low 
value of stress exponent may however correspond to 
the transition between diffusional flow and power-law 
creep mentioned above, which is indeed expected to 
take place at higher stresses for Ti-Tic than for 
CP-Ti, due to the smaller grain size of the composite. 
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Fig. 6. Thermally-cycled samples deformed to fracture. CP-Ti: 200% strain for a stress of 1.4 k 0.2 MPa. 

Ti-Tic: 135% strain for a stress of 1.25 + 0.05 MPa. 

4.2. Transformation-mismatch superplasticity of 
CP-Ti 

Thermal cycling experiments with no applied 
stress show that most of the longitudinal defor- 
mation is accumulated after the first cycle (0.047- 
0.1 l%, Fig. 4) and is thus most probably the result 
of relaxation of residual stresses. After the first 
cycle, however, the ratcheting strain per cycle (about 
4 x 1O-4 %) is much smaller than the constrained 
transformation strain of 1.6% [56], as also reported 
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In contrast to the very small ratcheting strains, the 
longitudinal strain resulting from thermal cycling 
under an applied load is large, up to 1.1% per cycle 
(Fig. 5), and strain increments can be added after each 
cycle without decaying. Fracture was observed after 
an engineering strain of 220% (200% if the necked 
region is not considered) under a constant stress of 
1.4 MPa. Both the high resistance to necking, and the 
linear relationship between strain per cycle and 
applied stress (Fig. 5), indicate that CP-Ti exhibits 
transformation-mismatch superplasticity. The total 
strain measured after one cycle (Fig. 5) is the sum of 
both superplastic strains and strains accumulated as 
a result of power-law creep outside the transformation 
temperature. To determine the contribution Ac due to 
transformation superplasticity alone, the strain AEON, 
resulting from power-law creep during the tempera- 
ture cycle, is subtracted from the total measured strain 
Att,t: 

Fig. 7. Comparison of isothermal creep data at 1000°C for 
CP-Ti with results by Lunsford and Grant [54] (T = 982°C) 
and by Gikawa et al. [55] (T= 1002°C). The sum of 
equations (1) and (2) is plotted with materials constants by 
Frost and Ashby [53] (solid line) and equation (1) is plotted 

with constants by Oikawa et al. [55] (dotted line). AE = Act,, - A+L. (3) 

for uranium and iron cycled through their phase 
transformation [17, 571. Assuming that a well- 
defined transformation front travels longitudinally 
through the sample and that the weaker phase 
deforms plastically in the directions parallel to the 
front, the cycled allotropic metal expands (respect- 
ively shrinks) longitudinally if the stronger phase has 
a larger (respectively smaller) density [17, 571. 
Because x-titanium is stronger and less dense than 
b-titanium [53, 561 and because the transformation 
front is expected to be parallel to the faces of the 
parallelepiped specimens, longitudinal expansion is 
predicted during ratcheting, in agreement with 
observation (Fig. 4). 
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Fig. 8. Superplastic strain per cycle At as a function of the 
applied stress for data presented in Fig. 5. 

The strain AcpL is determined by averaging the strain 
rate due to power-law creep over the temperature 
range spanned during the cycle: 

where i, is the experimental steady state creep at T,, 
(taken as the average of the two values measured 
before and after cycling), At is the duration of the 
cycle, D(T-) is the diffusion coefficient at the 
temperature T,, and Dd is the effective diffusion 
coefficient, averaged over the temperature spanned 
during one cycle [5]: 

&= & Jro*ID”exp(- &)dt. (5) 

In equation (5), T(t) is the experimental heating profile 
(Fig. l), R is the gas constant and D, and Q are, 
respectively, the pre-exponential constant and the 
activation energy for lattice diffusion, given in Ref. [53] 
for m-Ti and fi-Ti. Graphical integration of equation 
(5) yields Dca = 3.12 x lo- 14mz s- ’ for cycles between 
830 and 960°C and Des = 6.15 x lo-l4 m* s-’ for 
cycles between 830 and 1010°C. The effective 
temperatures corresponding to these effective diffu- 
sion coefficients are Tef = 905°C and Ter = 966”C, 
respectively. They represent the temperatures at which 
the isothermal strain rate due to power-law creep 
would be equal to the strain rate averaged over the 
temperature cycle. Figure 8 shows the superplastic 
strain per cycle Ac after correction according to 
equation (3). There is little difference between the 
superplastic strains per cycle for the two cycling 
profiles used for CP-Ti, despite the significantly higher 
isothermal creep contribution AE, for the high-tem- 
perature cycle (Fig. 5), which is thus correctly 
calculated by equation (4). 

Using the Levy-von Mises criterion and considering 
the biasing of internal strains by the externally applied 

stress Q, Greenwood and Johnson [12] derived a 
relationship for the strain AE, due to transformation 
plasticity over a complete cycle: 

where A V/V is the fractional constrained volume 
change during the transformation and cry is the 
uniaxial yield stress of the weakest phase at the 
transformation temperature. Since creep is rapid for 
/?-Ti at 882°C we follow Greenwood and Johnson’s 
approach to determine the yield stress. We take the 
flow stress c((*) given by equation (l), where i* is the 
rate at which the sample is deformed, which is 
estimated as the uniaxial transformation strain 
A V/3 V divided by the time At* for the transformation 
to take place: 

i*= 1avL 
3 V At*’ 

Using the value AV/V = 4.8 x 1O-3 measured by 
McCoy [56] and the experimental value At* x 160 s, 
Equation (7) yields i* z lo-%-I, and equation (1) 
gives for the yield stress a, x a(i*) = 2.0 MPa. 
equation (6) then predicts a value A+ = 4.0 
GPa-I, in good agreement with the experimental 
value A.c/a = 4 f 0.5 GPa-’ (Fig. 8). We use the 
value of A6 determined from equation (3), rather 
than the measured value Actot, since equation (6) 
does not take into account the contribution of 
power-law creep accumulated during the cycle and 
superimposed to the biased superplastic strain 
[equation (3)]. We note that equation (6) is valid for 
AC, < 2$AV/V) = 9.6 x lo-’ [12], a condition which 
is met in Fig. 8, where the largest experimental value 
is AE = 6.7 x lo-). 

If the weakest phase is deforming by time-dependent 
power-law creep, rather than time-independent yield, 
Greenwood and Johnson [12] considered the biasing of 
internal stresses, rather than the biasing of the internal 
strains leading to equation (6), and derived a related 
expression: 

& = ! ii!! 5n ’ .- t 3’ V 4n+l’ai, (8) 

where ai,, is the internal stress generated during the 
phase transformation and n is the stress exponent. 
With tint = o(t*) = 2.0 MPa and n = 4.3, equation (8) 
predicts a value A+ = 3.8 GPa- I close to that 
predicted by equation (6) and observed experimen- 
tally. Equation (8) is however only valid for bint>>Q, 
and can thus only be compared to the data measured 
at low applied stresses. 

Also considering biasing of an average internal 
stress ai, Wu et al. [5] derived an equation for the 
average strain rate it,, by assuming that half of the 
dislocations experience a stress which is increased by 
the internal stress (a + ai), and the other half 
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experience a stress which is reduced by the internal 
stress (a - ai): 

i,,, = - ; 
[ 
i(lo + a$ + e i((a - a,]) 1 (9) 

where i(a) is the functional creep relationship. 
Equation (9) can be approximated by a linear 
relationship, when the internal stress CT, is significantly 
greater than the applied stress 0. For a power-law 
material deforming according to equation (l), the 
low-stress regime is described by: 

where n is the power-law stress exponent. Taking the 
average strain rate &,, as the measured cycling strain, 
AetO,, multiplied by the cycling frequency, equation (10) 
yields 0, = 1.03 MPa, using Ter = 966°C as the 
effective temperature for the 15 min cycles between 830 
and 1010°C. For the data from the 1Zmin cycles 
between 830 and 96O”C, a fit of equation (10) gives 
bi = 1.22 MPa, i.e. higher than the value found for the 
15 min cycles. Wu et al. [5] also found an increase in 
internal stress with decreasing maximal temperature 
and increasing cycling frequency. We note that the 
internal stress according to Greenwood and Johnson 
[12], dint = 2 MPa, and according to Wu et al. [5], 
ei = 1.03-1.22 MPa, cannot be directly compared, 
since the former authors perform a multiaxial stress 
analysis, while the latter consider only uniaxial 
stresses. Finally, while the calculated internal stress 
values are on the order of the experimental applied 
stress values, equation (10) is only valid for the low 
range of applied stress values in Fig. 5. Using equation 
(9) with the internal stress values fitted above, a 
significant divergence between the predicted and the 
measured data is found above stress values on the 
order of 0.7 MPa. 

Figure 9 compares the measured strain per cycle, AC, 
corrected for isothermal creep according to equation 
(3), with results from other experiments reported in the 
literature for pure titanium. The superplastic strain per 
cycle measured by Greenwood and Johnson [12] 
(AC/O = 9 GPa-I) is significantly higher than our 
value AC/a = 4 + 0.5 GPa - I, probably because these 
authors did not correct for power-law creep during the 
cycle [equation (3)]. This may also explain why their 
data does not intersect the origin when extrapolating 
with a linear dependence between stress and strain, 
since the power-law creep contribution increases 
according to equation (1) with n = 4.3. Our data 
(AC/a = 4 f 0.5 GPa-‘) are in reasonable agreement 
with results by Kot et al. [13] (AE/a = 2.6 GPa - ‘) for 
titanium tested in tension at a rate of 14-28 K s - ’ and 
with measurements by Furushiro et al. [16] (Ae/a = 5 
GPa- I), performed in compression at a rate of 0.05 K 
s - ‘. The latter authors found that the strain per cycle 
was dependent on both the cycle frequency and the 
orientation of the applied stress with respect to the 

rolling direction of their samples. Chaix and 
Lasalmonie [14] however found a higher value 
(AC/a = 8 GPa- I) upon testing in compression at a 
rate of 0.03 K s- I. Possible reasons for this 
discrepancy are examined below. First, Chaix and 
Lasalmonie [ 14 tested titanium samples machined 
from sheets, which were probably rolled; the resulting 
texture may have influenced the measured strain, as 
shown by Furushiro et al. [16]. On the other hand, our 
samples were fabricated by hot-isostatic-pressing of 
powders and are thus expected to be texture-free. 
Second, the correction for power-law creep rate was 
performed differently in the two studies. Third, the 
specimens of Chaix and Lasalmonie [ 141 were almost 
monocrystalline after cycling, and thus may have 
shown very anisotropic mismatch stresses. Our 
samples however exhibited negligible grain growth, 
possibly as a result of impurities from powder 
processing, which pinned the grain boundaries. 
Finally, Chaix and Lasalmonie [ 141 did not pre-creep 
their samples prior to the thermal cycling experiments. 
We have found that, under these conditions, the strain 
per cycle in the first few cycles was significantly higher 
than if the sample had reached steady-state creep prior 
to cycling. This effect can be explained by a 
non-negligible contribution of primary creep to Atp~. 

Another related issue is the effect of the allotropic 
transformation upon the steady-state creep of 
titanium: if the phase transformation eliminates the 
dislocation substructure developed upon steady-state 
creep, primary creep is expected to take place after 
each crossing of the allotropic transformation 
temperature. This would lead to a larger value of AcpL 
than calculated using equation (3), which is based on 
steady-state strain rates, and thus to a lower value of 
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Fig. 9. Superplastic strain per cycle upon a-8-a cycling of 
pure titanium as a function of applied stress: data from 
Greenwood and Johnson [12], Chaix and Lasalmonie [14], 
Furushiro et al. [16] (average of 3-4 data points), Kot et al. 
[13] (average of 2 points, except at highest stress) and CP-Ti 

(present study). 
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the calculated strain per cycle AE. The following 
experiment was performed on CP-Ti to examine this 
issue. First, the unstressed sample was heated to 
95O”C, loaded to a stress of 1 MPa and the steady-state 
creep rate measured. The sample was then unloaded, 
cooled below the transformation temperature to 
8OO”C, reheated to 950°C and reloaded to the same 
stress. The measured creep rate at 950°C was similar 
to that before the temperature excursion, indicating 
that primary creep was negligible after the transform- 
ation. 

4.3. Transformation-mismatch superplasticity of 
Ti-Tic 

Like CP-Ti, samples of Ti-TiC cycled about the 
phase transformation of the matrix without applied 
stress develop most of their longitudinal strain after 
the first cycle (Fig. 4), indicating relaxation of internal 
stresses, probably as a result of sample machining. 
This is confirmed by the dilatometry data of an 
as-machined specimen [51], exhibiting a large 
deviation from the CTE dilation curve at temperatures 
above about 550°C upon heating, but no such 
anomaly upon cooling. The initial large strain 
increment in Fig. 4 is not due to transformation or 
CTE-residual stresses, since it is not observed after any 
of the subsequent cooling to room-temperature, 
performed for length measurement for each of the data 
point in Fig. 4. For one of the Ti-TiC samples shown 
in Fig. 4, thermal ratcheting after the first cycle is 
comparable to that ofCP-Ti (3.5 x 10e4 % per cycle). 
For the other Ti-TiC sample, with the largest 
elongation after the first cycle in Fig. 4, the average 
ratcheting rate is markedly larger up to cycle 23, but 
similar to that of CP-Ti between cycle 49 and cycle 78 
(3.5 x 1O-4 % per cycle). We conclude that, at 
steady-state, thermal ratcheting is not increased by the 
titanium carbide particles, as expected from the 
isotropic average mismatch resulting from equiaxed 
particles. However, as reviewed in Ref. [21], 
CTE-mismatch ratcheting in whiskers-reinforced 
composite is observed if the whiskers are aligned, as a 
result of anisotropic relaxation of internal stresses. 

In contrast to the ratcheting experiments described 
above, temperature cycling of Ti-TiC with an applied 
external stress leads to large strain increments of up to 
2.25% per cycle (Fig. 5), independently of the number 
of cycles. Upon repeated cycling, these increments can 
be added up to high values without premature failure: 
a total engineering strain to fracture LI= 135% was 
measured under a constant stress of 1.25 MPa. For 
comparison, the strain to failure for Ti-TiC is 
significantly smaller for isothermal creep at 1000°C 
(Ed = 30%, for a final stress of 2.96 MPa). T’he strain 
to failure under thermal cycling is however less for 
Ti-TiC (cf = 135%) than for CP-Ti (of = 200%), 
suggesting that the TiC particles accelerate fracture by 
cavitation, as also observed in composites deformed 
by fine-grain superplasticity [22]. The large tensile 
strains and the linear relationship between strain per 
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Fig. 10. Normalized strain rates as a function of stress for 
Ti-TiC deformed under cycling and isothermal conditions. 

cycle and stress (Fig. 5) indicate that Ti-TiC is 
deforming superplastically when subjected to both 
external loading and thermal cycling about the 
allotropic transformation temperature of the matrix. 
To the best of our knowledge, this is the first report of 
transformation-mismatch superplasticity in a metal 
matrix composite. 

Figure 10 compares the normalized strain rates for 
Ti-Tic deformed under cycling and isothermal 
conditions, respectively. For the cycling experiments, 
the total strain accumulated during the cycle ActO, 
divided by the cycle time At is taken as the average 
strain rate. The diffusion coefficient and the shear 
modulus at T = 1000°C and Ter = 966°C are used to 
normalize the data under isothermal and cycling 
conditions, respectively. It is apparent from Fig. 10 
that, at low stresses, the effective strain rate of Ti-TiC 
under thermal cycling conditions is significantly higher 
than under isothermal conditions, even for the 
relatively low cycling frequency used in the present 
study. This suggests that transformation-mismatch 
superplasticity could be used in forming operations for 
titanium-based composites, similarly to the forming of 
aluminum composites by CTE-mismatch superplastic- 
ity demonstrated by Chen et al. [39]. 

The mechanism responsible for superplastic defor- 
mation is expected to be similar for both expansion- 
and transformation-mismatch composite super- 
plasticity, i.e. biasing of internal stresses or strains 
induced by volume mismatch between the matrix and 
the reinforcement. However, there are significant 
differences between these two types of superplasticity. 
First, in the,. case of transformation-mismatch 
superplasticity, the temperature (or temperature 
interval) at which the deformation can take place is 
dictated by the thermodynamic stability of the 
transforming phase; the temperature interval for 
CTE-mismatch superplasticity can be varied within 
broad limits, giving more flexibility to the latter 
process. Second, the expansion-mismatch developed 
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in a composite is proportional to the temperature 
interval spanned during the cycle, while the whole 
transformation mismatch occurs at a constant 
temperature (for a pure metal) or within the 
temperature range at which the two allotropic phases 
coexist (for an alloy). In both cases, however, the 
mismatch developed is proportional to the heat 
flowing into, or out of, the sample. In the latter case, 
the transformation enthalpy AH, is proportional to the 
volumetric transformation mismatch A V/ V, while in 
the former case the enthalpy C,AT (which is necessary 
to change by ATthe temperature of the composite with 
specific heat C,) is proportional to the volumetric CTE 
mismatch 3AaAT, where Au is the CTE difference 
between the two phases. The dimensionless number p: 

AV 
-F .CP 

(11) 

then corresponds to the ratio of the enthalpy necessary 
to induce a given mismatch by thermal expansion, to 
the enthalpy needed to induce a mismatch of the same 
magnitude by allotropic transformation. For example, 
this ratio is about p = 4 for the system Ti-TiC and 
p = 13 for the system Fe-Tic, using thermodynamic 
and physical values given in Refs [58-60]. Thus, for a 
given mismatch, cycling outside the transformation 
temperature requires 4 (respectively 13) times more 
enthalpy than cycling at the transformation tempera- 
ture. If, as a first approximation, we assume that a 
given mismatch results in a given superplastic strain 
per cycle, independently of the source of the mismatch, 
then the cycling frequency (and the average strain rate 
that can be reached upon superplastic forming) will be 
higher by a factor p for transformation-mismatch 
superplasticity than for CTE-mismatch superplastic- 
ity for a given heat flux (i.e. heating system). The above 
approximation is a lower bound for the strain-rate 
advantage of composite transformation-mismatch 
superplasticity since, as shown below, the strain per 
cycle of a composite deformed by transformation-mis- 
match superplasticity is the sum of the strain observed 
in the matrix alone (ignored in the above discussion) 
and the strain induced by matrix-reinforcement 
mismatch. 

Finally, while CTE-mismatch superplasticity is 
applicable to the majority of metal-ceramic combi- 
nations, transformation-mismatch superplasticity is, 
by the very nature of its mechanism, limited to 
composites exhibiting a mismatch-inducing phase 
transformation [61]. Metallic matrices of technologi- 
cal interest exhibiting an allotropic transformation at 
ambient pressure include metals (e.g. beryllium, 
titanium, iron, cobalt, zirconium, tin, uranium [52]), 
alloys based on these allotropic metals (e.g. steels and 
Ti-6A1-4V) as well as inter-metallic compounds of 
non-allotropic metals (e.g. MoSi,, NirSi, CrzNb [52]). 
Zirconia and bismuth-containing oxides are examples 
of allotropic ceramics showing transformation 
superplasticity [62, 631 which, in combination with a 

non-transforming ceramic or metallic phase, could 
exhibit composite transformation super-plasticity. 
Reference [64] lists further metallic and non-metallic 
materials exhibiting allotropic phase transformations 
at ambient pressure. Finally, because most metals [65] 
and many ceramics [66] exhibit allotropic phases at 
elevated pressure, composite transformation-mis- 
match superplasticity by pressure-cycling is not only 
possible in principle, but may be relevant for 
geological materials subjected to high pressures (671, 
for instance allotropic silicates containing non-al- 
lotropic inclusions in the earth mantle. 

4.4. Modeling of enhanced transformation-mismatch 
superplasticity in Ti-Tic 

As shown in Fig. 8, the superplastic strain without 
power-law creep contribution is significantly higher 
for Ti-TiC (Acja = 7 f 0.5 GPa-‘) than for the 
CP-Ti (AC/~ = 4 + 0.5 GPa-‘). This novel effect is 
particularly noteworthy, since metal matrix com- 
posites typically exhibit lower creep rates than their 
unreinforced matrix [21], as also observed in the 
present study for Ti-TiC at stresses above 1.5 MPa at 
1000°C (Fig. 3). We hypothesize that the strain 
enhancement observed upon cycling of the composite 
is due to the increased internal mismatch in the matrix, 
as a result of the non-transforming particles. 

We first examine two other possible mechanisms 
which may explain the enhancement observed in Figs 5 
and 8. First, we note that the matrices of CP-Ti and 
Ti-TiC start to transform at 880 and 93O”C, 
respectively. The yield stress of fi-Ti given by 
equations (1) and (7) are by = 2 MPa and 
tr, = 1.7 MPa at these respective temperatures. 
Equation (6) then predicts for the matrix a superplastic 
strain higher by a factor 2/1.7 = 1.18 at the higher 
transformation temperature, a factor which is 
significantly smaller than the observed strain 
enhancement factor of 1.75 between CP-Ti and 
Ti-TiC (Fig. 8). Also, while contamination by oxygen 
(and thus the transformation temperature) increased 
with the duration of the experiments (as illustrated by 
the Widmannstatten structure observed in cycled 
titanium samples [51]), the measured strains per cycle 
were not found to increase with time, indicating that 
the above effect is not important. Another possible 
explanation for the observed enhancement in Ti-TiC 
is the difference of CTE between the two phases, which 
is expected to result in CTE-mismatch superplasticity. 
Averaged between 830 and lOlo”C, the CTE of 
titanium and TIC are respectively ari = 11.4 x 10e6 
K-’ and c(TiC = 8.6 x 1O-6 K-’ [58, 591, correspond- 
ing to a volumetric mismatch due to CTE differences, 
3( C~T,CCCTJAT = - 1.5 x lo- 3. The magnitude of this 
mismatch is significantly smaller than that of the 
density mismatch upon transformation, A V/ 
V = 4.8 x 10m3 [56] and the signs of the mismatches 
are opposite: a volume contraction is observed upon 
heating through the transformation from the 
low-temperature a-phase to the high temperature 
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B-phase [56,58,59,68], while a volume expansion 
results from the thermal expansion. The CTE 
mismatch is therefore canceled by the larger 
transformation mismatch. We conclude that the 
observed enhancement of superplastic deformation of 
Ti-TiC cannot be explained by CTE-mismatch 
superplasticity. In what follows, we examine the effect 
on superplastic deformation of internal stresses 
resulting from the transformation of titanium in the 
presence of an inert, non-transforming second-phase. 

As discussed earlier, both CTE mismatch and 
transformation mismatch induce internal stresses in 
a similar manner, and models for composite 
CTE-mismatch superplasticity are thus applicable 
with a few modifications to the present problem. 
Biasing of strains or stresses has been invoked by 
most authors modeling composite CTE-mismatch 
superplasticity, whereby the internal mismatch has 
been determined by continuum mechanics 
[28, 33, 37,38,45,49, 50,691, by the Eshelby method 
[41-44] or by finite elements [32, 35, 701. While models 
taking into account the biasing of internal strains by 
the external stress are appropriate for systems which 
do not exhibit significant creep deformation as a result 
of the internal stresses, these models are difficult to 
apply to the present case, since the yield stress is 
ill-defined due to rapid creep of /I-Ti at the transus 
temperature. Such a strain-biasing model is presented 
in the Appendix and predicts a superplastic strain 
enhancement which is in rough agreement with the 
measured effect for Ti-Tic. In what follows, we 
examine creep models based on the biasing of internal 
stresses, which are more applicable to a rapidly-creep- 
ing system such as Ti-Tic. 

Fitting the experimental data for Ti-TiC (Fig. 5) to 
equation (10) derived by Wu et al. [5] yields an internal 
stress gi = 1.22 MPa, which is higher than the value 
ei = 1.02 MPa found above for CP-Ti under the same 
cycling conditions. While the model is not predictive 
and can only be used at low applied stresses, the 
magnitude of the internal stress in the composite is 
reasonable, since it is below the yield stress of the 
matrix as defined above. In another model, Furness 
and Clyne [42,43] used the Eshelby method [71,72] to 
calculate the average deviatoric stresses in the matrix 
resulting from the superposition of the external 
applied stress and the internal CTE-mismatch stresses 
from oriented short fibers. Since in Ti-TiC the 
particles are assumed spherical and the volume 
transformation mismatch is assumed isotropic, this 
model predicts a purely hydrostatic spatial-average 
matrix stress and therefore no enhancement of the 
creep rate for the composite. 

Recently, Sato and Kuribayashi [69] have developed 
a multiaxial model for composite CTE-mismatch 
superplasticity, which takes into account the spatial 
variation of the state of stress within the matrix. 
Unlike models based on the Eshelby method, their 
model thus predicts volume-averaged deviatoric 
stresses in the matrix for the case of a mismatching 

elastic sphere. They assume that the matrix deforms 
according to a multiaxial power-law equation, and 
that interfacial diffusion relaxes the inclusion 
deviatoric back-stresses created by the incompatibility 
between the creeping matrix and the elastic inclusion. 
Upon thermal cycling with constant heating/cooling 
rate p, the uniaxial steady-state average strain rate i 
is then predicted as: 

;= 2n(n + 4) (1 -f”“) .(f,&)l- lh,~(a)l/” .- 
2”“5 (1 -f )’ 

for acta(i& (12a) 

i = (1 -f)-?(o) for a>>a(i& (12b) 

where 0 is the biasing stress, i(a) is described by the 
uniaxial power-law given by equation (l), n is the 
corresponding stress exponent, f is the volume 
fraction inclusions and the rate of internal mismatch 
strain between matrix and particulate is: 

itis = IAa.fl. (13) 

At low applied stresses, the strain rate is proportional 
to stress [equation (12a)], while at high applied 
stresses, a power-law behavior is predicted [equation 
W’b)l. 

Unlike CTE-mismatch superplasticity of com- 
posites such as Al-Sic, the matrix of which is not 
superplastic upon thermal cycling, the matrix of 
Ti-TiC exhibits transformation-mismatch superplas- 
ticity without the presence of reinforcement (Figs 5 
and 8). The matrix superplastic strain is thus enhanced 
by the presence of the non-transforming carbide 
particles by an increment Ac/o(Ti-Tic) - A+(CP- 
Ti) = 4 f 1 GPa- ’ (Fig. 5). As a first-order 
approximation, we assume that the two effects- 
superplastic strain of the unreinforced titanium matrix 
and superplastic strain from the mismatch between the 
transforming matrix and the inert reinforcement-can 
be added linearly. We can then treat the strain 
enhancement effect by the mismatching TiC particles 
within the superplastic titanium matrix in a similar 
fashion as the enhancement effect of a mismatching 
reinforcement in a non-superplastic, non-transform- 
ing matrix (CTE-mismatch superplasticity). Using the 
model by Sato and Kuribayashi [69] described above, 
we assume that the mismatch strain rate for Ti-TiC 
can be averaged as: 

where AT’ = 1283 - 1203 = 80 K is the magnitude of 
the temperature excursion above the transformation 
temperature and At = 300 s is the time for the heating 
portion of this excursion. We note that the 
contribution of the transformation mismatch AI’/ 
3 V = 1.6 x 10 - 3 is significantly larger than that of the 
CTE mismatch AaAT’ = 2.2 x 10m4. If these two 
mismatch strains are added in equation (14), an upper 
bound for the total mismatch strain upon heating is 
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found, corresponding to a system with mismatches of 
the same sign. Alternatively, for a system such as 
Ti-TiC with mismatches of opposite signs, the two 
contributions can only be added if they take place 
sequentially and if the relaxation of internal stresses is 
rapid [69]: for example, a pure metal exhibiting an 
isothermal transformation, followed by a temperature 
increase where only CTE mismatch strains are created. 
If however the two contributions are subtracted in 
equation (14) a lower bound is found, corresponding 
to the case where the transformation mismatch 
develops over the whole temperature interval (i.e. for 
an alloy with its two-phase region spanning the 
temperature interval AT’), concurrently with a 
thermal expansion mismatch of opposite sign, which 
partially cancels the transformation mismatch. 

We take the time average of equation (12) for the 
total average strain over a half cycle: 

(15) 

where the temperature cycle is approximated by a 
triangular wave, the first half of which is given by: 

T(t) = To + AT’. ; (16) 

where To = 1203 K (930°C) is the transformation start 
temperature in the composite. 

As shown by Sato and Kuribayashi [69] and as 
reflected by the use of absolute values in equations (13) 
and (14), itis does not depend on the sign of the 
mismatching strains: the sign of the uniaxial 
steady-state average strain rate c-of the sample is thus 
expected to be the same upon heating and cooling. 
Neglecting the transient due to the reversal of strain 
direction at T,,,, and T,,,i,, the total strain per cycle due 
to the presence of TIC particles therefore is 2AE. The 
superplastic strain of the composite AE, is then: 

AC, = AtT, + 2At (17) 

where AE~, is the superplastic strain of the unreinforced 
matrix. 

We first examine the low-stress regime, for which a 
linear relationship exists between applied stress and 
strain rate [equation (12a)]. Introducing equations 
(12a), (14) and (16) into equation (15), and solving 
numerically with the material constants of P-Ti given 
above, yields 2Ac/a = 2.34 - 2.9 GPa-‘. With this 
value and the measured value of the superplastic strain 
of CP-Ti A~,,/cr = 7 + 0.5 GPa- ’ (Fig. 5), equation 
(17) yields Ae,/a = 9.6 f 0.8 GPa- I, in satisfactory 
agreement with the superplastic strain At/o = 11 & 1 
GPa - ’ measured at low stresses (Figs 5 and 11). The 
contribution of CTE-mismatch superplasticity for the 
interval 830-930°C is negligible: using At = 150 s and 
equations (12a), (13) and (15), we find 2Ac/0 = 0.11 
GPaa’. 

For the high stress regime, equations (12b) and 
(14t(l7) are solved as described above, assuming the 

same linear relationship for the superplastic strain of 
CP-Ti (Atn/o = 7 + 0.5 GPa- I), found valid in Fig. 5 
for stresses up to 1.57 MPa. The resulting non-linear 
relationship between applied stress and strain per cycle 
predicted for the composite is also plotted in Fig. 11 
and found to be in reasonable agreement with the data 
point for Ti-TiC measured at high applied stress 
((T = 1.71 MPa). 

Many simplifying assumptions have been made in 
the above analysis. First, we have assumed that the 
transformation strain of the pure matrix could be 
added to the mismatch strain due to the particles 
[equation (17)]. We in effect assumed that the stresses 
are localized. either at the boundary between two 
matrix grains or at the interface between a matrix grain 
and a particle. Second, the temperature profile is 
assumed triangular [equation (1611, and does not 
correspond closely to the experimental profile given in 
Fig. 1. However, the temperature profile within the 
sample bulk is likely to be closer to the triangular shape 
assumed in equation (16) than Fig. 1 is, since the 
transformation enthalpy absorbed or released by the 
sample during cycling flattens the slopes of the heating 
and cooling ramps. Third, the model assumes equal 
elastic moduli for both phases and small inclusion 
volume fraction; this will introduce errors in the 
internal stress determination, since these conditions 
are not met. Fourth, the transformation mismatch 
between matrix and particle [equation (14)] is assumed 
to be equivalent to a CTE mismatch of the same 
magnitude [equation (13)]. At the microscopic level, 
however, the mismatch is quite different in nature: for 
CTE mismatch, the strains are isotropic and generated 
along the whole particle-matrix interface, as assumed 
in the original model. Transformation mismatch is 
however likely to be more localized, depending on the 
location of the transforming grains. The use of average 
stress values may however limit this error. Fifth, the 
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Fig. 11. Total strain per cycle Attot as a function of applied 
stress 6, measured for CP-Ti and Ti-TiC cvcled between 830 
and 1010°C. Predicted strain for Ti-Tic (a) at low stresses 
from equations (12a) and (17) and (b) at high stresses from 

equations (12b) and (17). 
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angular shape of the particles, which may result in 
locally higher stress, is not taken into account. 
However, as shown by Withers et al. [73], these stress 
concentrations can be ignored at a short distance from 
the interface (Saint-Venant’s principle). Finally, 
interfacial diffusion, assumed to be rapid in the above 
model, is found to be very slow when using the 
estimation given in Ref. [69] for the Ti-TiC system at 
Tea = 966°C for particles 5 pm in radius. Other 
relaxation mechanisms, such as interfacial sliding, 
prismatic loop punching or enhanced diffusion by 
local stress concentration, may however allow the 
relaxation of deviatoric stresses in the particles. 
Despite the above approximations and the uncer- 
tainty linked with the materials constants used, the 
agreement between the predicted superplastic strain 
increase, calculated above using equation (17) without 
disposable parameters, and the observed superplastic 
deformation for the composite is satisfactory (Fig. 
11). We thus conclude that the enhancement of 
superplastic deformation observed in the composite 
can be quantitatively described by the biasing of the 
internal stresses in the transforming matrix, which are 
increased by the inert, non-transforming TiC 
particles. 

5. CONCLUSIONS 

Isothermal creep of commercial-purity titanium 
(CP-Ti) and titanium containing 10 ~01% TiC 
equiaxed particles (Ti-Tic) was measured at 1000°C 
for stresses between 0.4 and 3 MPa. The creep 
behavior of CP-Ti is well predicted by power-law 
creep with a stress exponent n = 4.3. The stress 
exponent for Ti-TiC is 2.2, indicative of a regime 
intermediate between power-law and diffusion con- 
trol. 

Thermal ratcheting upon cycling about the 
allotropic transformation temperature of titanium 
with no external stress applied is small for CP-Ti 
(4 x 1O-4 % per cycle). Except for transients in the 
first cycles, the same ratcheting value is found for 
Ti-Tic, as expected since the equiaxed reinforcement 
induces an isotropic mismatch with the matrix. 

Thermal cycling about the transformation tempera- 
ture under an applied uniaxial stress induces 
transformation-mismatch superplasticity in CP-Ti. 
For applied stresses between 0.19 and 1.72 MPa, the 
strain per cycle AE varies linearly with the applied stress 
0 as At/a = 4 GPa- ’ (without power-law creep 
contribution). This value is in good agreement with the 
model by Greenwood and Johnson [12] considering 
the biasing by the external stress of the internal strain 
induced by the density mismatch between transform- 
ing grains. Fracture occurs at a strain of 200% under 
a constant stress of 1.4 MPa. 

The composite Ti-TiC exhibits transformation-mis- 
match superplasticity in the same stress range, with a 
strain to failure of 135% for a stress of 1.25 MPa. To 
the best of our knowledge, this is the first report of 

transformation superplasticity for a metal matrix 
composite. Superplastic forming of Ti-TiC and other 
composites exhibiting a phase transformation is thus 
possible, independently of the grain size of the 
materials [61]. 

The superplastic strain per cycle for Ti-TiC 
(AC/~ = 7 GPa -I, without power-law creep contri- 
bution) is significantly higher than for CP-Ti. This 
novel effect is modeled by considering the increase of 
internal stresses in the creeping matrix as a result of the 
mismatch between the transforming matrix and the 
non-transforming particles. The superplastic strain 
per cycle predicted by the biasing of internal stresses 
is in satisfactory agreement with the observed 
superplastic strains of the composite. 
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APPENDIX 

Composite Transformation-Mismatch Superplasticity 
Model Using Biased Internal Strains 

Daehn [38] considered the biasing of internal CTE-mis- 
match strains between an elastic, perfectly plastic matrix and 
aligned long fibers, and derived an expression for the strain 
Asp resulting from a biasing external stress u after half a 
thermal cycle: 

where uo is the matrix yield stress at the end of the half cycle, 
f is the fiber volume fraction and F = L/4S is a geometric 
factor containing the fiber length L and the fiber spacing S. 
The mismatch strain is: 

cm” = Ae(AT - AT& (‘42) 

where Aa is the CTE-mismatch between the two phases, AT 
is the magnitude of the temperature excursion and ATat is the 
temperature change needed to initiate matrix plasticity. 
While equation (A2) is strictly valid only for metal matrix 
composites containing long fibers, Chen and Daehn [74] 

found that, if the geometric factor Fin equation (Al) is set 
equal to unity, good agreement is obtained with data for 
CTE-mismatch superplasticity in particulate-reinforced 
composites. For the case of a mismatch resulting from a 
change of matrix density upon transformation, we replace the 
thermal mismatch strain given in equation (A2) by: 

1 AV &is = 5 7 - IAaATj I I 
where the CTE contribution is subtracted from the uniaxial 
transformation strain, since the two mismatches are of 
opposite signs. We have thus assumed that the mismatch 
within the materials is completely relaxed at the upper and 
lower temperatures of the cycle. 

We do not consider a critical strain for the onset of 
plasticity [corresponding to AT, in equation (A2)], since the 
matrix is assumed to be at the yield point as a result of the 
transformation-induced plasticity taking place indepen- 
dently of the reinforcement. Introducing equation (A3) and 
F = 1 into equation (Al) gives for a full cycle: 

(A4) 

where eti and UO~ are the yield stress of the sample, assumed 
to be fully a at 830°C at the end of the cooling period and fully 
/I at 1010°C at the end of the heating period. As described 
earlier, we take for the yield stress the flow stress a@*), given 
by equation (l), where i* = 10e5 s-r, resulting in 
cti = 6.9 MPa and UO~ = 1.34 MPa. With the materials data 
given in the main body of the text, equation (A4) yields 
At, = 1.7 GPa-‘, in approximate agreement with the 
observed value Ac/u(Ti-Tic) - A#r(CP-Ti) = 3 k 1 
GPa - ’ (Fig. 8). 


