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Abstract--Two-dimensional computer simulations based on the cellular automaton algorithm were carried 
out to study the case of the recrystaUization of a matrix containing inert, immobile particles. A range of 
particle area fractions, sizes and aspect ratios were investigated under continuous grain nucleation 
conditions, assuming that the effect of particles is limited to geometric impingement upon contact with 
the recrystallizing grains. Particles influence both overall recrystallization kinetics and the geometric 
characteristics of the recrystallized grain structure. Systematic deviations from the predictions by the 
Johnson, Mehl, Avrami, Kolmogorov (JMAK) theory for the recrystallization of a particle-free matrix 
are observed with increasing particle aspect ratio, and, to a lesser extent, particle fraction and size. These 
deviations are not predicted by a modified JMAK equation assuming that the impingement effect of inert 
particles is equivalent to that of non-growing grains, and result from the aspect ratio and size differences 
that exist between grains and particles. Inert particles also influence both mean size and mean aspect ratio 
of the recrystallized grains. While the normalized grain size distributions are unaffected by the particles, 
the normalized grain aspect ratio distributions exhibit significant variations as the particle geometric 
parameters are varied. 

Rtsumt---On a entrepris des simulations par ordinateur bas6es sur l'algorithme de l'automate cellulaire 
deux dimensions, afin d'6tudier la recristallisation d'une matrice contenant des particules inertes et 

immobiles. Une gamme de fractions ar6olaire, tailles et rapports d'aUongement de particules est explor6e 
avec des conditions de nucl6ation continue de grains, en supposant que le seul effet des particules est 
d'obstruer les grains lors de leur croissance par recristallisation. Les particules influencent aussi bien la 
cin6tique de recristallisation que les caract6ristiques g6om6triques de la structure des grains recristallis6s. 
On observe des d6viations syst6matiques des pr6dictions par Johnson, Mehl, Avrami et Kolmogorov 
(JMAK) pour la recristallisation d'une matrice sans particules; ces d6viations augmentent avec une 
augmentation du rapport d'allongement des particules ainsi que, d'une moindre mani6re, avec une 
augmentation de la fraction et de la taille des particules. Ces d6viations ne sont pas pr6dites par une 
6quation de type JMAK modifi6e, qui suppose que l'effet d'obstruction des particules est 6quivalent ~ celui 
de grains qui ne croissent pas, et sont le r6sultat de la diff6rence de rapport d'allongement et de taille entre 
grains et particules. Les particules inertes influencent aussi la taille moyenne et le rapport d'allongement 
moyen des grains recristallis6s. Alors que les distributions normalis6es des tailles de grain ne sont pas 
influencL-es par les particules, les distributions normalis6es des rapports d'aUongement des grains changent 
de mani6re significative lorsque les param6tres g6om6triques des particules varient. 

1. INTRODUCTION 

The kinetics of  crystallization and recrystallization 
by nucleation and growth of  grains are described by 
the classical theory of  Johnson and Mehl  [1], Avrami 
[2,3] and Kolmogorov  [4] (JMAK).  Analytical 
J M A K - t y p e  solutions are available only for simple 
cases such as continuous nucleation, rite-saturated 
nucleation and continuously varying nucleation rates 
[5]. More  complex conditions (e.g. space- or  time- 
dependent nucleation or  growth rates for cases such 
as dynamic recrystallization, deformation bands or 
multiple phases) can be untractable analytically, lead- 
ing many investigators to use computer  simulation 
techniques to investigate crystallization and recrystal- 

lization kinetics and the topological characteristics 
of  the grains. Algori thms used for these simulations 
are based on (i) the equation of  mot ion of  grain 
boundaries [6-10], (ii) binary tree construction on a 
grid [11-15], (iii) the Monte-Carlo  method [16-20] 
and (iv) cellular automata  [21-23]. The last three 
methods discretize space in two- or three-dimensional 
cells. 

As reviewed recently by RoUett et al. [24], 
the presence of  an inert second phase in a matrix 
undergoing recrystallization can strongly influence 
the kinetics of  the process (i) by increasing the rate 
of  nucleation at the matrix-part icle interface which 
is locally more deformed, and/or  (ii) by inhibiting by 
Zener pinning the coarsening of  subgrains that are 
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responsible for the nucleation of the recrystallized 
grains, thus decreasing the recrystallization nucle- 
ation rate. Rollett et al. [19, 24] have studied by 
two-dimensional Monte Carlo simulations the recrys- 
tallization kinetics of a matrix containing equiaxed 
particles with a size equal to that of the cells, 
i.e. much smaller than the final grain size. They 
concluded that at high stored energies, the recrystal- 
lization growth is not affected by the particles. At 
low stored energies, however, particle pinning of both 
nuclei and larger grains was found to occur, thus 
inhibiting recrystallization. The nucleation stage was 
also affected by the particles, which acted as hetero- 
geneous nucleation sites. Grain coarsening during 
and after recrystallization was found to be strongly 
inhibited by particles, which thus further affected the 
grain microstructure. 

While, as shown above, Zener drag on recrystalliz- 
ing grains by well-dispersed, small particles can be 
neglected when the driving force for recrystallization 
is high, that effect can become important when 
the particles are spatially clustered, their shape is 
not equiaxed or their volume fraction is high. Saetre 
et al. [14] and Nes et al. [25] investigated the recrys- 
tallization behavior of  a matrix containing stringers 
of densely spaced particles, typically found in rolled 
metals where particles are clustered in sheets parallel 
to the rolling direction. They analytically derived the 
grain boundary velocity as a function of the particle 
shape and boundary orientation with respect to the 
rolling direction. Computer simulations using these 
values generated pancake-shaped grains displaying a 
morphology and distribution form in good agreement 
with experimental data from rolled A1-Mn alloys. 
Furu et al. [5, 15, 26] investigated both analytically 
and by computer simulation the effect of inhomoge- 
nously distributed, particle-stimulated nucleation 
sites. Two cases were examined: (i) nucleation of a 
single grain by each particle, and (ii) site saturation 
at the surface of the particles. The former case was in 
better agreement than the latter with experimental 
results on recrystallized aluminum alloys. Humphreys 
[9, 27] recently explored the effect of a dispersion 
of small equiaxed particles on the nucleation and 
growth of recrystallized grains, using a network 
model where subgrains as well as grains were con- 
sidered. The model operates on a smaller scale than 
those reviewed above and addresses the early stages 
of recrystallization for materials such as aluminum, 
where subgrains play a large role in that process. For 
nucleation, a gradient of subgrain energies near the 
particles was introduced and the particle-matrix in- 
terface was modeled as a high-angle grain boundary. 
To take into account the effect of particles on growth, 
a pinning force assigned to the particles was added to 
the forces due to grain boundary energies. 

The effects reported above, which particles exert 
on the nucleation and growth of recrystallizing 
grains, are thermodynamical in nature, i,e. they can be 
described by considering the energy of the system. 

Inert particles also have a purely geometric effect 
resulting from the impingement they exert on grains: 
the growth of a recrystallizing grain is stopped at the 
points where it contacts a particle. This interaction 
may become important when the specific area of 
matrix-particle interface is high, i.e. for high volume 
fractions, high aspect ratios and small sizes of par- 
ticles, in such materials as those formed by phase 
separation through solidification or precipitation in 
the solid state, in metal- or ceramic matrix composites 
and in foamed materials (where the second phase is 
formed by pores). The purpose of the present study 
is to explore the geometric impingement effect of an 
inert, immobile second phase on the recrystallization 
kinetics of a matrix as well as the resulting grain 
topology. Parameters being varied are particle size, 
area fraction and aspect ratio. 

2. COMPUTATIONAL PROCEDURES 

As described in more details by Hesselbarth and 
G6bel [21], a cellular automaton for recrystallization 
consists of a field of cells with two possible states-- 
recrystallized and unrecrystallized--which evolves 
with time according to local topological rules. Time 
is discretized in time-steps which are further divided 
in two sequential events: growth and nucleation. In 
the nucleation phase, nuclei consisting of a single 
recrystallized cell are distributed randomly in the 
field; only those that are nucleated on an unrecrystal- 
lized cell are considered. For a constant nucleation 
rate by unit area, the total number of new nuclei 
added to the field for each time step thus decreases 
with time as a result of the shrinking unrecrystallized 
space available for nucleation. In the growth phase, 
the entire field is updated according to the following 
deterministic rules: 

(1) a recrystallized cell remains recrystallized; 
(2) an unrecrystallized cell becomes recrystal- 
lized if at least one of its neighbors is recrystal- 
lized. It becomes part of the same grain as the 
recrystallized neighbor. 

The following rules were added to the original model 
by Hesselbarth and G6bel [21] to take into account 
the presence of inert particles: 

(3) at time t = 0, second-phase particles are 
placed randomly on the field with a minimum 
spacing of two cells between particles; these 
particles cannot grow. 
(4) matrix grains neither nucleate nor grow 
within particles. 

The following parameters were used in the present 
study: 

(i) a two-dimensional field of 262,144 (5122) 
square cells oriented along orthogonal axes 
with periodic boundary conditions; 
(ii) homogenous nucleation conditions, with a 

nucleation rate of 4 '  10 4 for each time step; 
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Fig. I. Alternating six-cell neighborhood around cell 5: 

(1, 2, 4, 6, 8, 9) followed by (2, 3, 4, 6, 7, 8). 

(iii) a neighborhood of six alternating neigh- 
bors for the growth phase (Fig. 1), resulting in 
equiaxed octagonal grains before impingement. 
Other possible neighborhoods can be defined, 
resulting in different growth rates but giving 
the same Avrami exponent for particle-free 
recrystallization [21]. The above neighborhood 
yields recrystallized structures with the largest 
number of grain boundary orientations [22], 
and thus gives structures closest to those ob- 
served in recrystallized materials. Since no 
nuclei exist at time t = 0, growth does not take 
place in the first time step t = l which consists 
of a nucleation event only. 
(iv) an unrecrystallized cell with recrystallizcd 
neighbors belonging to more than one grain 
becomes part of any of the competing grains 
with the same probability. 

Three parameters related to the geometry of the 
second phase wcre varied: particle size a (measured in 
number of cells), particle area fraction f and particle 
aspect ratio r. A set of baseline values (a = 64, 
f = 0.125 and r = 4) was chosen, and each parameter 

Table 1. Particle geometric characteristics varied in the parametric 
studies (baseline values are in bold characters) 

Size a [cells] 4 16 64 256 
Area fraction f[ - ] 0 0.03125 0.0625 0.125 0.25 
Aspect ratio r [ - ]  1 4 16 64 

was varied separately according to Table 1, keeping 
the other two parameters fixed at their baseline 
values. After each time step, the area fraction of 
recrystallized matrix x was calculated as the ratio of 
recrystallized matrix area to total matrix area. The 
grain size A (measured in number of cells) and grain 
aspect ratio R--defined as the ratio (larger than 1) of 
the projections of the grain along the two orthogonal 
axes--were calculated for each grain at the end of 
the simulation. The resulting distributions for A 
and R were analyzed using non-parametric statistics 
(Appendix 1). All statistical results were determined 
using two simulations carried out with the same 
parameters but different random spatial distributions 
of particle and nuclei. 

3. RESULTS 

Figure 2(a) and (b) illustrates the impinging effect 
upon a single rccrystaUizing grain of particles 
with different aspect ratios but same total area. The 
contours correspond to the location of the grain 
boundary at different time-steps. A grain nucleating 
between regions of  high area fraction of  small, 
equiaxed particles [Fig. 2(a)] grows through these 
regions virtually unimpeded by the particles which 
are rapidly engulfed. Except for two small ledges, the 
grain has the octagonal shape expected for a grain 
growing in a particle-free matrix. However, if the 
small, equiaxed particles of Fig. 2(a) are replaced 
by elongated particles [two-dimensional "fibers", 
Fig. 2(b)] with the same total area, the growth of the 
grain is markedly modified. Five distinct stages are 
observed: (1) unimpeded, two-dimensional growth 
before contact with the fibers (t ~< 7); (2) channeled, 

(a) 
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/ 

(b) 

(i) (ii) 

Fig. 2. Different stages of growth of a single grain in a matrix containing the same area fraction of 
particles of different shapes and aspect ratio: (a) 128 small, equiaxed particles for times t = l, 6, l l ,  
21, 31, 41, 51, 61, 71, 81; (b) 2 large, elongated fibers: (i) for times t = 1, 6, II, 21, 31, 41; (ii) for times 

t = 51, 61, 71, 81. 
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one-dimensional growth between the fibers, with the 
mobile grain boundaries perpendicular to the fibers 
(7 < t ~< 31); (3) two-dimensional growth from the 
recrystallized regions at both ends of the channel 
formed by the fibers (31 < t ~< 63); (4) merging of 
these two distinct regions, with the formation of a 
groove on the grain boundary parallel to the fibers 
(63 < t ~< 90); (5) disappearance of the groove and 
further unimpeded growth of the grain (t > 90). 
The resulting grain [Fig. 2(bii)] shows a flattened 
octagonal shape, the height of  which corresponds to 
the height of the regular octagonal shape of the freely 
growing grain [Fig. 2(a)]. 

Figure 3(a-b) shows the time evolution of the 
topological parameters (aspect ratio R and square 
root of the area A 1/2) for the grains in Fig. 2(a, b). As 
expected for the case of a freely growing grain, the 
grain growing through the array of small, equiaxed 
particles [Fig. 2(a)] shows a constant aspect ratio 
R = 1 and an area A increasing with the square of 
time. On the other hand, the aspect ratio of the grain 
growing between the two fibers increases from unity 
at the end of  stage (1) to a maximum value at the 
end of stage (2), and decreases monotonously after 
growth becomes two-dimensional again (stages 3-5). 
The five stages described above are also clearly visible 
in Fig. 3(b) for the area of the grain growing between 
the fibers: from a normal two-dimensional rate [stage 
(1)], the rate of  growth goes through a minimum 
when the grain is channeled by the fibers [stage (2)], 
followed by a maximum when the two end regions 
of the grain are growing independently in two- 
dimensional manner [stage (3)] until it matches again 
the rate of  a freely growing grain [stage (5)]. 

In Figs 4-6, the whole field of the cellular automa- 
ton is reproduced at different times in the simulation. 
The particles are filled, the grain boundaries are 
shown as lines and the origin of each grain, corre- 
sponding to the position of its nucleus, is marked as 
a filled cell within each grain. The computational 
procedure (iv) described above results in ragged 
grain-boundaries, as also observed in Monte-Carlo 
recrystallization simulations by Srolovitz et al. [16]. 
Figure 4(a-c), corresponding to the matrix without 
particle explored by Hesselbarth and Grbel [21], 
shows the classical stages of growth with minimal 
impingement [Fig. 4(a)], growth with limited impinge- 
ment due to neighboring grains [Fig. 4(b)], and 
complete impingement resulting in a fully recrystal- 
lized field [Fig. 4(c)]. Figure 5(a-c) depicts the case of 
a matrix containing particles with baseline par- 
ameters (size a = 64 cells, area fract ionf  = 0.125 and 
aspect ratio r = 4). It is apparent that impingement 
between particles and grains occurs early for grains 
which nucleated near particles [Fig. 5(a)]. With about 
50% of the structure recrystallized, most grains which 
have grown for more than three time-steps are in 
contact with both particles and other grains [Fig. 
5(b)]. In the final structure [Fig. 5(c)] the majority of  
the grains contacts one particle, with most of the 

(a) 
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t 

Fig. 3. (a) Grain aspect ratio R as a function of time for 
the cases depicted in Fig. 2(a, b). (b) Square root of 
grain size A 1/2 as a function of time for the cases depicted 
in Fig. 2(a, b). Numbered regions ae described in the text. 

other grains in contact with zero or two particles. 
Figure 6(a--c) corresponds to the evolution of  recrys- 
tallization of a matrix containing particles with the 
highest aspect ratio explored (r = 64). Most grains 
are in contact with at least one two-dimensional fiber 
early in their growth [Fig. 6(a)]. As grain growth 
becomes channeled between fibers [Fig. 6(b)], the final 
grain structure is markedly elongated in the direction 
of the fibers, with about 75% of the grain population 
in contact with at least two fibers [Fig. 6(c)]. In the 
final structure, most boundaries between grains are 
perpendicular to the fibers, and few boundaries be- 
tween grains exist parallel to the fibers, as the average 
length of  the grains in that direction is smaller than 
the fiber length. 

In Fig. 7(a-c), the area fraction of recrystallized 
matrix x is plotted as a function of time t for some 
of the particle parameters explored. The curves have 
a sigmoidal shape, typical of a JMAK-type equation: 

x = 1 - exp(-k t" ) ,  (1) 

where k is a function of the nucleation and growth 
rates and n is the Avrami exponent (Appendix 2). It 
is apparent that recrystallization is slowed as the 
particle perimeter per unit area matrix is increased, 
i.e. with increasing particle area fraction and aspect 
ratio and with decreasing particle size. The same data 
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Fig. 4(a, b). Caption overleaf. 
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(e) 

Fig. 4. Recrystallized field without particles at different times: (a) early stage, (b) intermediate stage, (c) 
complete recrystallization. 
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Fig. 5(a). Caption on facing page. 
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Fig. 6. Recrystallized field containing particles with parameters a = 64 cells, f=  0.125 and r = 64 at 
different times: (a) early stage, (b) intermediate stage, (c) complete recrystallization. 

are shown in Fig. 8(a-c) in double logarithmic plots, 
the slopes of which correspond to the Avrami expo- 
nent n, which is also given as a function of time in 
these figures. As expected, the theoretical value n = 3 
is found for the case where the field does not contain 
any particle [Fig. 8(b), f = 0], but significant depar- 
tures from the expected value are observed for some 
of the particle parameters explored. 

Since, as shown in Fig. 7(a-c), an increasing par- 
ticle specific perimeter increases the time necessary 
for full recrystallization, the total number of grains 
nucleated during the recrystallization period is also 
expected to increase, and thus the mean grain size .~i 
after complete recrystallization is expected to d~- 
crease. This is indeed the case, as seen in Fig. 9(a-c), 
which shows .~/, normalized by the mean grain size of 
the base line case A0 for all explored particle par- 
ameters. Also displayed in Fig. 9(a-c) is the normal- 
ized mean aspect ratio of recrystallized grains R/R0, 
which increases with increasing values of a, f,  and r. 
The normalized grain size distribution A/.4 and aspect 
ratio distribution R/R are given in Figs 10(a-c) and 
11 (a-c) for some of the particle parameters explored. 

4. DISCUSSION 

In this study, it was assumed that the second phase 
particles have no effect, other than the geometric 

impingement they exert on growing grains. This 
assumption allows to study separately the impinge- 
ment effect, which is usually found superimposed 
with other effects in experimental studies of recrystal- 
lization in two-phase materials: particles can stimu- 
late the nucleation stage by increasing the amount of 
heterogeneous nucleation sites, retard the growth 
kinetics by pinning grain boundaries, or be pushed by 
the moving boundaries [20]. 

4.1. Kinetics of recrystallization 

As shown in Appendix 2, the results of the original 
JMAK derivation [equation (1)] are unchanged if 
inert, discontinuous particles are introduced in the 
matrix, because the particle volume can be subtracted 
from the total volume. The important assumption 
underlying this result is that overall impingement by 
the particles is isotropic and proportional to their 
volume fraction. Special cases of anisotropic impinge- 
ment can however be treated within the JMAK 
framework: in the three-dimensional case, full im- 
pingement in one or two directions is modeled by 
assigning a zero growth rate in these directions, 
leading to two- or one-dimensional growth with 
Avrami exponent of n = 3 and n = 2 respectively for 
continuous nucleation conditions [3]. Similarly, in 
two-dimensional recrystallization, complete lack of 
growth in one or two directions leads to an Avrami 
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Fig. 7. Matrix fraction recrystallizcd x as a function of  time 
t for a matrix containing particles with varying (a) size a, (b) 

area fraction f, (c) aspect ratio r. 
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exponent of n = 2 and n = 1 respectively. Total im- 
pingement in one direction corresponds for instance 
to the case of a matrix containing elongated particles 
with a length larger than the length of the field, 
preventing all growth in the direction perpendicular 
to the fiber axis [Fig. 2(bi)]. Therefore, impingement 
by a discontinuous second phase is expected to 
become of importance when at least one of the 
particle's dimensions becomes comparable to the final 
grain size, and when the particle volume fraction is 
large enough that a significant number of  grains 
interact with particles. However, unlike the cases 
described above where full impingement in one or 
more direction exists, partial impingement resulting 
from a discontinuous second phase cannot be mod- 
elled simply by modifying the overall growth rates in 
the JMAK derivation. 
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exponent n for the same particle parameters as in Fig. 7. (a) 

Size a, (b) area fraction f, (c) aspect ratio r. 
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Fig. 10. Distribution of normalized grain size A/~i for a fully 
recrystallized matrix containing particles with varying (a) 

size a, (b) area fraction f, (c) aspect ratio r. 
At the local scale of  the cell or grain boundary, 

impingement between two grains, on the one hand, 
and between a grain and a particle, on the other, has 
a similar effect: growth is locally stopped. At the 
larger scale of  grains, however, the two types of  
impingements are different because (i) particles, un- 
like grains, do not grow with time and (ii) particles 
may be non-equiaxed. Dissimilarity (i) results in an 

overall grain-particle impingement which increases 
first with time, as an increasing number of  grains 
contact particles, and may then decrease, as particles 
are engulfed by grains. On the other hand, the overall 
grain-grain impingement does not decrease with time, 
since all grains are growing simultaneously. However, 
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Fig. 11. Distribution of grain aspect ratio R for a fully 
recrystallized matrix containing particles with varying (a) 

size a, (b) area fraction f, (c) aspect ratio r. 

as shown in Appendix 2, the presence of an inert 
second phase does not affect the overall kinetics of 
the matrix, provided overall impingement by the 
particles is isotropic and proportional to their volume 
fraction [equation (A4)]. Dissimilarity (ii)--the shape 
difference that exists between grains and non- 
equiaxed part icles--may lead to a situation that 
violates the above assumption. The impingement 
between a grain and an elongated particle is maxi- 
mum (minimum, respectively) when the grain bound- 
ary moves in a direction orthogonal (parallel, 
respectively) to the particle main axis. Elongated 
particles exert an impingement which is total in the 
direction perpendicular to their long axis, as long as 

the grain does not engulf the particle [Figs 2(b) 
and 3]. As a result, significant deviation from the 
JMAK equation can occur, and the topology of the 
recrystallized grains can be altered by the presence of 
the particles, as shown below. On the other hand, 
small particles are rapidly engulfed, with no effect on 
overall growth kinetics [Figs 2(a) and 3], as shown 
analytically in Appendix 2 and as found in Monte- 
Carlo simulations by Rollett et al. [19, 24] 

The Avrami exponent shown in Fig. 8(b) for a 
particle-free matrix ( f - - -0)  is close to the value of 
n = 3 for matrix recrystallized fractions between 
x = 0.05 and x = 0.95, as expected from equation (1) 
and as also found by Hesselbarth and Gfbel  [21] in 
cellular automaton simulations carried under the 
same nucleation and growth conditions. These 
authors ascribed the deviations at low and high 
recrystallized fractions (also visible in Fig. 8) to 
stochastic variations resulting from the small number 
of grains growing. As the particle area fraction f 
increases, the Avrami exponent plotted in Fig. 8(b) 
decreases, as expected from an increasing impinge- 
ment between particles and grains. An increasing 
particle size a, at constant particle area fraction and 
aspect ratio, yields Avrami exponents below n = 3 
and decreasing with time up to x = 0.95 [Fig. 8(a)]. 
The overall effect is however small and the JMAK 
curves are virtually superimposed. 

The most important deviations from the unim- 
peded case are found when the particle aspect ratio 
r is increased [Fig. 8(c)]. While for r = 4, the Avrami 
exponent is close to n = 3 until values of about 
x = 0.65, for r --- 16, the Avrami exponent decreases 
rapidly from n = 3 to values as low as n = 2.4 as 
recrystallization proceeds. This can be explained by 
the anisotropic impingement effect discussed above 
and illustrated in Figs 2(b), 3 and 6, whereby growth 
under continuous nucleation conditions occurs 
in a regime intermediate between two-dimensional 
growth (n = 3) and one-dimensional growth (n = 2). 
The effect is even stronger for a particle aspect ratio 
r = 64, where the Avrami exponent decreases steadily 
from n = 3 at low recrystallized area fractions to 
n = 1.7 for x =0.95. A value below n = 2 corre- 
sponds to a case between continuous nucleation 
without growth (n = 1) and continuous nucleation 
with unidirectional growth (n = 2). Oriented 
elongated particles have thus a strong effect on the 
kinetics of recrystallization, as a result of anisotropic 
impingement between grains and particles. 

4.2. Grain topology 

We now consider the effect of particle impingement 
on the geometrical characteristics of the recrystallized 
grains. The grain mean area ,~ departs from the 
baseline grain mean area d 0 as the particle size, area 
fraction and aspect ratio vary [Fig. 9(a-c)]. The 
observed variation (between 1.9 and 20.5%) is large 
compared to the difference of 0 .40  found between 
two simulations carried out under baseline conditions 
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( / / =  214.1 and ,4 = 215.3). In all cases, ,~ decreases 
as the particle perimeter per unit area matrix in- 
creases, i.e. with decreasing particle size and increas- 
ing particle aspect ratio and area fraction. The effect 
of particle size is however much smaller than that of 
the two other parameters, in accord with the obser- 
vation by Rollett et al. [19,24] that very small 
particles have little influence on simulated recrystal- 
lization kinetics. Furthermore, the mean grain aspect 
ratio g increases with increasing particle aspect ratio, 
size and area fraction [Fig. 9(a-c)]. As for the grain 
mean area, the differences in mean grain aspect ratios 
between two baseline runs is much smaller than that 
observed when one of the particle parameters is 
varied. 

It is difficult to evaluate by visual inspection of 
Figs 10 and 11 how significant the difference between 
distributions is, as particle parameters are varied. The 
normal deviate Z (defined in Appendix 1) is used as 
a quantitative measure of the difference between the 
baseline distribution and the distributions from the 
parametric study. To take into account the shift of 
distribution due to differences in mean value, we list 
in Table 2 the deviate Z R for the distribution of grain 
aspect ratio normalized by their mean grain aspect 
ratio R/R, and the deviate ZA for the normalized 
grain size distribution A/,4. For comparison, ZR 
and Z A were first determined for two simulations 
performed under the same baseline particle parameter 
conditions, yielding values of ZR=I .11  and 
ZA = 0.0533. The non-zero values of Z are due to the 
different locations of particles and nuclei for the two 
baseline simulations. These normal deviates are how- 
ever smaller than the critical normal deviate value of 
Z c = 1.96 for a 5% significance level (corresponding 
to the threshold below which 95% of the Z values 
from two identical populations is expected to be). 
Normal deviates between the baseline condition and 
the other conditions explored (Table 2) show that, for 
most particle sizes, area fractions and aspect ratios, 
values of Z R are above the threshold Zc for a signifi- 
cance level of 5% (with the exception of r = 1 and 
f = 0.0625). The numerical value of Z R increases as 
the difference between the particle parameters in- 
creases, indicating that the normalized distributions 
become more different. In contrast to the strong effect 
found for the normalized grain aspect ratio distri- 
butions, all Z A values listed in Table 2, calculated for 
the distributions of normalized grain sizes, fall signifi- 
cantly below the threshold of Zc = 1.96 for a 5% 
significance level. It can thus be concluded that, while 
the mean grain size varies significantly when varying 
the particle parameters [Fig. 9], the grain size distri- 
butions can be scaled to the baseline condition. 
Normalization does not however compensate for the 
differences found in the grain aspect ratio distri- 
bution. 

All distributions of grain aspect ratios (Fig. 11) 
exhibit systematic peaks and troughs at grain aspect 
ratios values corresponding to ratios of small integers 

x/y: peaks are found for R = 1/1, 3/2, 2/1, etc. and 
troughs for R = 5/7, 10/9, etc. If the frequency of all 
possible combinations x /y  is plotted, where x and y 
are positive integers less than a maximum value Xma~, 
the same characteristic peaks and troughs are found 
for small values of Xr~ax [Fig. 12(a)]. This noise 
however decreases in importance as Xma x increases. 
The same phenomenon is true for the distribution of 
all possible products x -y [Fig. 12(b)], which mimics 
the noise found in the distribution of grain area 
(Fig. 10). The lack of smoothness of the distributions 
of grain sizes and aspect ratios (Figs 10 and 11) is 
thus the result of the finite length of the cells used in 
the simulation and the bins used for the distribution: 
as the size of the cell decreases compared to the size 
of the grain, this effect is expected to become less 
important. We note that this artifact is not peculiar 
to cellular automata models, but is shared by all other 
computer studies where space is discretized. 

The recrystallized grain sizes (Fig. 10) show a 
significantly more sharply peaked distribution 
around the mean value than the random distribution 
[Fig. 12(b)] which exhibits a longer tail for small 
abeissa values. This is not unexpected, as the grains 
resulting from the recrystallization process are the 
result of mutual interactions during impingement, 
leading to a distribution of shapes which is plane- 
filling and thus non-random. We note that grain 
growth by coarsening during or after recrystalliza- 
tion, which cannot be simulated with the algorithm 
used in this study, further skews these distributions 
towards larger grain size, as found in many computer 
simulations of grain growth for matrices with or 
without particles [28-34]. 

The distribution of aspect ratios for f = 0  
[Fig. 11 (b)] also exhibits a much higher peak than the 
random distribution [Fig. 12(a)]. Thus, as expected 
from the condition that impingement is isotropic 
upon recrystallization without particles, equiaxed or 
nearly-equiaxed grains are much more frequent than 
in a random distribution. However, as the particle 
size, aspect ratio and area fraction increase, the 
grain aspect ratio distribution broadens. The effect 
is strongest with particles with high aspect ratios 
r which induce strong anisotropic impingement 
[Fig. 2(b)]: for r = 64 [Fig. 1 l(c)], the simulated grain 
aspect ratio distribution is flatter and broader than 
the random distribution [Fig. 12(a)]. 

The above results are for the case of two-dimen- 
sional crystallization and recrystallization, which are 
found in such technically relevant situations as so- 
lidification or annealing of thin films, plates and 
shells. Hesselbarth [22] has shown that, while compu- 
tation-intensive, three-dimensional simulations using 
cellular automata yield results in agreement with 
the JMAK theory for both homogenous and site- 
saturated nucleation without particles. The present 
study focusing on the effect of a second phase could 
be extended to three dimensions as well, where the 
effect of particles, fibers, plates and interconnected 
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Table 2. Mean grain size .4, mean grain aspect ratio/~, normal deviate Z A for normalized 
grain size distribution A/A and normal deviate Z R for normalized grain ratio distribution 

R/I~ between the parametric distribution and the baseline distribution 

,~ R ZA Ze 

Baseline 
a = 64, f =  0.125, r = 4  214.5_+1 1.355_+0.005 0.0533' 1.11 a 

a = 64, r = 4, f = 0 225 1.28 0.240 6.50 
f = 0.03125 224 1.29 0.619 5.65 
f = 0.0625 222 1.34 0.126 1.15 
f = 0.25 198 1.47 0.337 5.21 

f =  0.125, r =4, a =4 211 1.30 0.222 4.46 
a = 16 210 1.31 0.448 4.31 
a = 256 220 1.46 0.155 9.22 

a =64,f=0.125, r = 1 219 1.35 0.0443 0.666 
r = 16 201 1.70 0.732 10.9 
r = 64 172 3.16 0.851 59.2 

=Normal deviate between two separate simulations carried under baseline conditions. 

skeletons on  the kinetics of  the mat r ix  recrystalliza- 
t ion could be explored. 

5. CONCLUSIONS 

The  two-dimensional  cellular a u t o m a t o n  a lgor i thm 
in t roduced  by Hesse lbar th  and  G r b e l  [21] for the 
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Fig. 12. (a) Frequency plots for all possible values of the 
ratio of integers x/y, where x and y are positive integers less 
than a maximum value Xmax = 20 or xm~ = 200. (b) Fre- 
quency plots for all possible values of the product of integers 
x -y (normalized by the mean product x-~) ,  where x and 
y are positive integers less than a maximum value Xm~x = 20 

or Xma x = 200. 

recrystall ization of  single-phase mater ia ls  is extended 
to the case of  a mat r ix  conta in ing  an  inert,  immobi le  
second phase. The  effect of  second phase  particles is 
assumed to be solely t h rough  geometric impingement  
upon  contac t  with growing grains. Var ious  particle 
sizes, area fract ions and  aspect  rat ios are invest igated 
for condi t ions  of  con t inuous  grain nucleat ion in the 
matrix.  

Particles are found  to influence the kinetics of  
recrystall ization by lowering the Avrami  exponent  
and  increasing the t ime necessary for full recrystal- 
lization: within the parameters  explored, the effect 
is largest for  particles with high aspect rat ios 
which prevent  growth  in the direct ion perpendicular  
to their  long axis. Increasing particle area f ract ion 
has a similar bu t  smaller influence, while the effect 
of  particle size is very small. These effects are no t  
predicted by a J o h n s o n - M e h l - A v r a m i - K o l m o g o r o v  
equa t ion  modified for the presence of  inert  particles, 
because the size and  shape of  the particles canno t  be 
taken  into account  in the derivat ion.  

Iner t  particles also influence b o t h  the mean  size of  
recrystailized grains, which decreases with decreasing 
particle size and  increasing particle aspect rat io 
and  area fraction,  and  the mean  aspect rat io  o f  
recrystallized grains, which increases with  an  increase 
of  the above  parameters .  The normal ized  grain size 
d is t r ibut ion  is however  unaffected by the particles, 
unlike the normal ized  grain aspect rat io d is t r ibut ion  
which exhibits  significant differences as particle 
parameters  are varied. 
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A P P E N D I X  1 

Non-Parametric Statistics 

In order to compare the distributions of grain geo- 
metrical characteristics (normalized grain size and 
aspect ratio) for simulations carried under  different 
particle geometric parameters, a non-parametric stat- 
istical test is used, which does not  make any assump- 
tions concerning the distribution of the populations 
considered. The Wilcoxon Rank-Sum Test [35] com- 
pares two populations 1 and 2 (e.g. populations 
of grains in matrices containing particles with differ- 
ent aspect ratios) constituted of a number  of obser- 
vations (e.g. normalized grain size) m 1 and m 2 
respectively. The two populations are first merged 
into a single populat ion for which each observation 
is ranked in ascending order. The ranked obser- 
vations are then separated into their original popu- 
lations, and the sum W of the observation ranks 
for populat ion 1 is computed. Under  the null 
hypothesis of identical populations (e.g. the two 
populations have the same normalized grain size 
distribution), there is an equal chance for any 
particular rank to belong to populat ion 1 or 2. 
Assuming a normal sampling distribution for I4, the 
normal deviate Z for the Wilcoxon R a n k - S u m  Test 
defined as 

ml (ml + m2 + 1) 
14 

2 
Z ~ mlm2(ml_+ - m: + 1) 

12 

can be compared to tabulated critical values Z~ for a 
given significance level [35]. 

A P P E N D I X  2 

J M A K  Derivation for  a Matrix  Containing Inert 
Particles 

In the original J M A K  derivation, the extended 
volume fraction of recrystallized matrix Xe, corre- 
sponding to the volume fraction recrystallized at time 
t if the overlap of grains is neglected, is 

xe = kt  ~ (A1) 

where k is a function of the growth rate, nucleation 
rate and geometry of the growing grains, and the 
Avrami exponent n varies between 1 and 4, depending 
on the dimensionality of growth and the time depen- 
dence of the nucleation rate. 

Assuming a random distribution of grains and 
assuming that the ratio of increase in actual volume 
fraction of reerystallized matrix dx to increase in 
extended recrystallized volume fraction dxc, is equal 
to the unrecrystallized volume fraction 1 - x  

dx 
- -  = 1 - x ( A 2 )  
dx e 
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the classical JMAK equation is obtained by combining 
equations (A 1) and (A2), integrating and rearranging 

x = l - e x p ( - k t  ~). (A3) 

We now derive the case of a composite containing 
inert, non-recrystallizing particles of volume fraction 
f and a recrystallizing matrix of  volume fraction 
(1 - f ) .  We make the same assumption as above, but 
take into account that a fraction f of  the composite 
is occupied by particles which do not recrystallize 

dx 
- -  = 1 - -  x - - f .  ( A 4 )  
dx~ 

Separation of variables, and integration of equation 
(A4) between 0 and Xe, and 0 and x, respectively, with 
a change of  variable z = l - f - x ,  yields after re- 
arrangement and use of equation (A1): 

x --- (1 - f ) [ 1  - e x p ( - k t  n)]. (A5) 

The volume fraction of recrystallized composite 
varies between x = 0 and x = 1 - f ,  and, as expected, 
equation (A5) simplifies to equation (A3) f o r f  = 0. If, 
instead of  considering the total composite volume as 
the sum of volumes of  particles and matrix, the total 
volume is defined as that of the matrix only, the 
volume fraction recrystallized composite normalized 
by the matrix volume fraction x ' =  x/(1 - f )  varies 
between 0 and 1 and equation (AS) is equivalent 
to equation (A3). We thus conclude that, assuming 
that particles reduce the extended volume according 
to equation (A4), particles have no impingement 
effect on the kinetics of recrystallization of the matrix. 

The above result is not immediately intuitive since 
impediment between a growing grain and a non- 
growing particle would be expected to vary differently 
with time than the impingement between two growing 
grains. A purely geometric approach to the above 
solution is sketched in Figs A1-A4. Figure AI shows 
the extended recrystallized volume, actual recrystal- 
lized volume and total volume used in the original 
JMAK derivation [equations (A1)-(A3)]. Figure A2 
corresponds to the situation where a fraction of the 
total volume is occupied by particles. The exact 
location of the particles does not influence the 
amount of extended volume overlapping with par- 
ticles, since grain nucleation occurs randomly within 
the available volume and impingement is isotropic. 
The particles can thus be gathered together, as in Fig. 
A3, which is equivalent to Fig. A4, which itself is 
equivalent to Fig. A1, albeit with a smaller total 
volume. It can thus be concluded that the particles do 
not alter the recrystallization kinetics of the matrix. 
It also follows that the shape and size of the particles 
have no influence on the recrystallization, as only the 
volume of the particle is considered in the derivation. 

However, if it is assumed that particles have an 
effect on the nucleation rate (by particle stimulated 
nucleation) or growth (Zener pinning), equation (A5) 
must be modified and the particles are predicted to 
alter the overall kinetics of recrystallization. 

IMPINGEMENT EFFECT ON RECRYSTALLIZATION 

A2 

A3 

© 

Fig. A1. Impinging spherical grains in a total volume (given 
by the box): the extended volume is the sum of the volumes 
of the grains within the total volume, the recrystallized 
volume is the extended volume minus the volume of overlap- 

ping grains. 

Fig. A2. Part of the total volume in Fig. A1 is occupied by 
shaded cubic particles. 

Fig. A3. Same volume as Fig. A2, with particles rearranged. 

Fig. A4. Same volume as Fig. A3, considering only the 
matrix volume. This situation is equivalent to Fig. AI, with 

a smaller total volume. 


