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Abstract—Transformation-mismatch plasticity (or transformation superplasticity) is a deformation mech-
anism occurring in materials undergoing a thermally-induced solid-state phase transformation, while subjected
to an external stress. The classic model of this phenomenon, due to Greenwood and Johnson (Proc. Roy.
Soc. Lond., 283A, pp. 403–422, 1965), is limited to the description of strain increments developed after
isothermal transformations, as for pure, allotropic metals. In the present work we generalize this model to
the case of a non-isothermal transformation, which is applicable to polymorphic alloys displaying a broad
range of transformation temperatures. Experiments conducted on Ti–6Al–4V are used to validate the new
generalized model, which predicts the strain developed after each thermal cycle, the contributions of the
transformations on heating and cooling, and the kinetics of strain evolution during an individual cycle.
2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Transformation-mismatch plasticity is a deformation
mechanism which occurs in polymorphic materials,
and which requires both internal and external stresses
[1, 2]. The internal stresses are created during the
phase transformation by volume mismatch between
the polymorphic phases, while the external stress
biases the resulting internal strains, producing a plas-
tic strain increment after the completion of the phase
transformation. When the applied external stress is
small compared to the internal mismatch stresses, the
resulting strain increment is proportional to the
applied stress. The deformation is thus Newtonian
(i.e., has a stress exponent of unity), leading to excep-
tional flow stability. By thermally cycling, multiple
transformations can be induced in a single specimen,
allowing the accumulation of large net strains (often >
100%), and classification astransformation super-
plasticity.

The seminal theory for transformation-mismatch
plasticity was advanced 35 years ago by Greenwood
and Johnson [3], who considered the deformation of
the weaker polymorphic phase due to triaxial volume-
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mismatch from the stronger polymorphic phase, with
a concurrent uniaxial external stress. They assumed a
constitutive creep law for the weaker phase:

ė 5 A·sn (1)

with ė the uniaxial strain rate,A a constant incorporat-
ing an Arrhenius temperature dependence,s the
applied uniaxial stress, andn the stress exponent.
Further assuming a complete transformation at con-
stant temperature, Greenwood and Johnson [3]
derived a concise result, valid for small applied
stressess:

De 5
2
3
·

5·n
4·n 1 1

·|DV
V |·ss0

(2)

whereDe is the increment of plastic strain accumu-
lated after each transformation,DV/V is the volume
mismatch between the two polymorphic phases, and
s0 is an average internal equivalent stress, which can
be calculated from:

s0 5 F2
3
·|DV

V |· 1
A·DtG1/n

(3)
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whereDt is the duration of the phase transformation.
When the weaker phase deforms by time-independent
yield, Greenwood and Johnson [3] derived an
expression similar to that of equation (2) in terms of
the yield stress of the weak phase rather than the
internal stresss0.

The linear stress dependence of equation (2) has
been validated by experiments on a host of materials
which creep at the transformation temperatures,
including pure allotropic metals (e.g., Ti [3–9], Zr [3,
10, 11], U [3, 12, 13]), alloys (e.g., Ti–6Al–4V [5,
14, 15], Supera2 Ti3Al [16]), metal–matrix com-
posites (e.g., Ti/TiC [8, 9], Ti–6Al–4V/TiC [15], Ti–
6Al–4V/TiB [14]), and ceramics (Bi2O3 [17, 18]).
Some of the above experiments meet the criterion of
isothermal transformation (i.e., pure, allotropic metals
and ceramics transforming at a single temperature),
while alloys subjected to “square” thermal cycles
(rapid heating and cooling separated by isothermal
periods) provide a fair approximation of isothermal
transformations. When the creep law of the weaker
phase [equation (1)], the volume mismatch, and the
duration of the phase transformation are all known,
equation (2) has been found to agree well with experi-
ment without the need for adjustable parameters [10,
16, 17]. Additionally, if the forward and reverse trans-
formations occur at the same temperature, then equ-
ation (2) predicts that the strain increment developed
on the forward transformation is equal to that
developed on the reverse transformation during ther-
mal cycling. This prediction has recently been exper-
imentally confirmed for pure zirconium [10].

As summarized above, the Greenwood and John-
son model of transformation-mismatch plasticity has
met with considerable success in predicting plastic
strain increments during isothermal transformations,
most notably for pure metals. However, transform-
ation-mismatch plasticity is currently of interest for
shape-forming of engineering materials, including
alloys, intermetallic compounds, and composites with
matrices of these alloys [8, 19, 20]. Because such
materials do not typically transform at a single tem-
perature, but rather over a broad range of tempera-
tures, equation (2) cannot be applied to predict the
resulting strain increments during thermal cycling.
The purpose of the present article is thus to model
transformation-mismatch plasticity under non-iso-
thermal conditions, by generalizing the original
model of Greenwood and Johnson to include time-
and/or temperature-dependence of the physical input
parameters. Additionally, we report thermal cycling
experiments on Ti–6Al–4V (for which transformation
occurs over a broad range of temperatures), to vali-
date the predictive capabilities of the model.

2. THEORY

In the derivation of equation (2), Greenwood and
Johnson [3] consider transformation-mismatch plas-
ticity to be governed by deformation of the weaker

polymorphic phase under the combined internal and
external stress state during the transformation. The
weak phase is assumed to follow the typical creep
power-law of equation (1), which is generalized to
three dimensions as [21]:

ėij 5
3
2
·A·sij·sn21

eq (4)

where the equivalent stressseq is given in terms of
the individual stress tensor components:

2
3
·s2

eq 5 s2
xx 1 s2

yy 1 s2
zz 1 2·s2

xy 1 2·s2
yz (5)

1 2·s2
zx

The creep law of equations (1) and (4) is tempera-
ture-dependent through the parameterA, which can
be written:

A 5 A9· expS2
Q

R·TD (6)

whereA9 is a temperature-independent constant,Q is
the activation energy for creep,R is the ideal gas con-
stant, andT is absolute temperature.

As the first step in their derivation, Greenwood and
Johnson [3] assume that the equivalent stress state is
unchanging in time during the transformation. The
additional assumption that the transformation occurs
isothermally removes the time dependence ofA and
n, allowing closed-form integration of equation (4)
over the duration of the phase transformation. This
procedure gives a tensorial relationship between the
total strain state after the transformation and the stress
state. The authors subsequently use this relationship,
the transformation mismatch tensor and its invariants,
and equation (5) to derive equation (2). However, the
assumptions made in the first steps of their derivation
limit the scope of their model to isothermal trans-
formations. In what follows, we remove those
assumptions and proceed in a manner similar to that
of Greenwood and Johnson [3], with no stipulations
regarding the time- or temperature-dependence of the
variablesA, n, or DV/V.

During the phase transformation, the total, or net,
strain tensor,eNij in the weak phase is composed of
two components, namely a plastic straineij, due to
creep and the transformation mismatch straineMij :

eNij 5 eij 1 eMij (7a)

which, upon differentiation with respect to time, is:

ėNij 5 ėij 1 ėMij (7b)
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During the transformation, volume-conserving flow
occurs preferentially in thez-direction, in which a
small external stress,s, is applied. Thus, the net strain
rate tensor is taken to have the following form:

ėNij 5








2

1
2
ė 0 0

0 2
1
2
ė 0

0 0 ė 








(8)

Through equations (7b) and (8), an expression for
ė is sought in terms of the mismatch tensor compo-
nents ėMij , the creep parameters of the weaker phase
(throughėij and equation (4)), and the external stress
applied in thez-direction,s.

First, introduction of equation (4) into equation (5)
to eliminateseq yields:

ė2xx 1 ė2yy 1 ė2zz 1 2·ė2xy 1 2·ė2yz 1 2·ė2zx (9)

5
3
2
·A2·F2

3
·
ėzz

A·szz
G 2n

n21

which, when combined with equations (7b) and
(8), becomes:

S2
1
2
ė2ėMxxD2

1 S2
1
2
ė2ėMyyD2

1 (ė2ėMzz)2

1 2·(2ėMxy)2 1 2·(2ėMyz)2 1 2·(2ėMzx)2

5
3
2
·A2·F2

3
·
ė2ėMzz

A·szz
G 2n

n21
(10)

The first and second invariants of the mismatch
strain-rate tensor,ėMI and ėMII , are respectively
defined as:

ėMI 5 ėMxx 1 ėMyy 1 ėMzz (11)

2
3
·(ėMII )2 5 (ėMxx)2 1 (ėMyy)2 1 (ėMzz)2 (12)

1 2·(ėMxy)2 1 2·(ėMyz)2 1 2·(ėMzx)2

The mismatch strain tensor (eMij ) is discussed by
Greenwood and Johnson [3], Anderson and Bishop
[22], and Zwigl and Dunand [23], who describe the
values of the invariantseMI , eMII in terms of the volume
mismatchDV/V. Differentiation of this mismatch ten-
sor with respect to time allows similar expressions to
be derived for the invariants of the mismatch strain-
rate tensor:

ėMI 5 0 (13a)

ėMII 5
d
dt|DV

V | (13b)

Using equations (11)–(13a) in equation (10) results in
the following constitutive relationship for defor-
mation in thez-direction during the phase transform-
ation:

szz 5
(ė2ėMzz)

(ėMII )
·F3

2
·
A
ėMII
G2

1
n
·F12

9
2
·
ė·ėMzz

(ėMII )2· (14)

1
9
4
·
ė2

(ėMII )2G12n
2·n

Thezz-components of the stress and strain-rate ten-
sors in the above expression are related to the global
coordinate system through a rotational transform-
ation. Greenwood and Johnson [3] thus determine
macroscopic stress and strain relationships by averag-
ing an equation similar to equation (14) over all poss-
ible phase orientations, i.e., over the surface of a
sphere. Thezz-component of the mismatch strain-rate
tensor is related to its second invariant (equation
(13b)) through a coordinate transformation [3]:

ėMzz 5
1
3
·ėMII · cos2(f)· sin2(q)

1
1
3
·ėMII · sin2(f)· sin2(q)2

2
3
·ėMII · cos2(q)

5 ėMII ·S1
3

2cos2(q)D (15)

and both sides of equation (14) can now be averaged
over the orientation hemisphere using:

X̄ 5
1
p2·r2·E

p/2

0

E
p/2

0

X·2·p·r2· sinq· dq· dj (16)

where the quantity to be averaged,X, is the left- or
right-hand side of equation (14). This procedure
yields, after some manipulation:

2
3
·s 5 F3

2
·
A
ėMII
G2

1
n
·gS ėiėMII D (17)

in which

gS ėėMII D 5 E
p/2

0

S ėėMII 2
1
3

1 cos2qD·F12
9
2
·
ė
ėMII

·S1
3

2 cos2qD
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1
9
4
·
ė2

(ėMII )2G12n
2·n

· sinq· dq (18)

The integral in equation (18) is nonlinear, and, for
a given numerical value ofnÞ1, cannot be solved in
closed form. An analogous integral, in terms of the
strain increment De and the volume mismatch
|DV/V|, arises in the original derivation of Greenwood
and Johnson [3]; these authors approximately solve
the integral by assuming thatDe¿|DV/V|, linearizing
the integrand, and thereby deriving equation (2). As
discussed in [10, 16], Greenwood and Johnson’s inte-
gral expression (analog to equation (18)) can also be
solved numerically for specific combinations of stress
and strain increment. In the following section, we
present a first-order approximate solution of equation
(18) which parallels the original Greenwood and
Johnson [3] derivation, and which is valid at low
strain rates or applied stresses. In a later section we
discuss the solution of Eq. (18) at high strain-rates,
and describe a numerical technique which is appli-
cable over the full range of stresses and strain rates.

2.1. Linear solution

In order to linearize the integrand of equation (18)
we assume that the strain rateė is small compared to
the rate of mismatch strain development,ėMII . The
bracketed term in equation (18) can then be expanded
in a Taylor series, and higher order (non-linear) terms
in ė neglected, giving:

gS ėėMII D 5 E
p/2

0

F ėėMII S1 1
9
2
·
12n
2·n

·S1
3

2 cos2qD2D
2S1

3
2 cos2qDG· sinq· dq

5
ė
ėMII

·
4·n 1 1

5·n
(19)

which, when combined with equation (17) gives a
closed-form expression for the instantaneous macro-
scopic strain rate in the direction of the applied bias-
ing stresss:

ė 5
2
3
·

5·n
4·n 1 1

·s·ėMII F3
2
·
A
ėMII
G1

n
(20)

Equation (20) predicts the instantaneous strain rate
during the phase transformation in terms of the creep
properties of the weaker phase (the parametersA and
n) and the rate of volume mismatch evolution (ėMII ).
The full plastic strain increment developed after a
complete transformation can be determined by inte-
gration of equation (20) over the duration of the
phase transformation:

De 5
2
3
·E
Dt

0

5·n
4·n 1 1

·s·ėMII F3
2
·
A
ėMII
G1

n
· dt (21)

and the average strain rate during the transformation,
ė, is equal toDe/Dt.

In their derivation, Greenwood and Johnson [3]
assumed that the transformation occurs isothermally
(A and n are constants), and that the equivalent
internal stress is time-independent. With these
assumptions, and identifying the last term in the inte-
gral of equation (21) with the inverse of the equival-
ent stress due to the phase transformations0 (see equ-
ation (3)) equation (21) reduces to:

De 5
2
3
·

5·n
4·n 1 1

·
s
s0

·E
Dt

0

ėMII · dt (22)

Upon introduction of equation (13b) into this equ-
ation, Greenwood and Johnson’s orginal expression
for De (equation (2)) is recovered. Thus, equation
(21) is a more general form of their model, capable
of incorporating time dependence of any of the input
parameters, and which gives an identical result when
their assumptions are employed.

For alloys which only partially transform, or which
transform over a broad range of temperatures, the rate
at which the internal mismatch strain develops deter-
mines the magnitude of the plastic strain increment
through the integral in equation (21). The internal
mismatch strain, when spatially averaged over the
specimen bulk, can be assumed to develop in pro-
portion with the volume fraction of transformed
phase,f:

ėMII 5 ḟ·|DV
V | (23)

Equation (23) can be used in place of equation (13b)
to account for time- and/or temperature-dependence
of the rate of phase transformation. In cases where
the transformation occurs over a broad temperature
range, the change of volume fractionf with tempera-
ture may be related toḟ through the heating or cooling
rate of the thermal excursion.

2.1.1. Isothermal transformation kinetics. To
demonstrate the use of equation (21) in predicting
transformation-mismatch plasticity strain increments,
we discuss here the specific case of an isothermal
transformation, as originally considered by Green-
wood and Johnson [3]. In this case, the variablesA, n,
andDV/V are constants, and only the phase fraction,f,
varies during the transformation time. With this con-
dition, introduction of equation (23) into equation
(21) gives:
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De 5
2
3
·

5·n
4·n 1 1

·
DV
V

·s·332·
A

DV
V
4

1
n

·E
Dt

0

ḟ
n21

n · dt (24)

In what follows, we consider several kinetic equations
which describef as a function of time during the iso-
thermal transformation, and integrate equation (24) to
predict the strain increment,De.

In their work, Greenwood and Johnson [3] do not
explicitly assume any specific transformation kinetics,
but rather take the internal equivalent stress to be con-
stant during the transformation. By comparing equ-
ation (21) and equation (23) with equation (3), we
note that this condition is tantamount to assuming a
linear kinetic equation of the form:

f 5
t

Dt
(25)

whereDt is the time for a complete transformation.
Introducing equation (25) into equation (24) and inte-
grating yields Greenwood and Johnson’s model, equ-
ation (2).

As an improvement on this preliminary assump-
tion, we consider kinetic equations of the Johnson–
Mehl–Avrami type [24–27]:

f 5 12exp(C·td) (26)

whereC is a kinetic constant andd51, 2, or 3. We
approximate the transformation timeDt by the time
required to achieve a fractionf* of transformed vol-
ume (i.e.,t5Dt whenf 5 f∗); the critical volume frac-
tion is chosen arbitrarily asf∗ 5 0.99. This boundary
condition allows equation (26) to be rewritten as:

f 5 12(12f∗)S
t

DtD
d

(27)

Figure 1 plotsf againstt/Dt given by equation (27)
with each value ofd as a parameter; the linear kinetic
approximation of equation (25) is shown for compari-
son. Introducing equation (27) into equation (24) and
normalizing timet with Dt gives:

De 5
2
3
·

5·n
4·n 1 1

·
DV
V

·
s
s0

·x (28)

wheres0 is defined in equation (3). This expression
is identical to equation (2) multiplied by the dimen-
sionless constantx, which is given by:

x 5 E
1

0

[ 2ln(12f∗)·td21·d·(12f∗)t
d
]
n21

n · dt (29)

Fig. 1. Kinetics of an isothermal phase transformation; volume
fraction transformed,f, as a function of non-dimensional time.
Solid lines are the Johnson–Mehl–Avrami kinetic equation
(equation (27)), compared with a simple linear-kinetic approxi-

mation (dashed line, equation (25)).

This integral has been evaluated numerically ford51,
2, 3, for physically-reasonable values of the stress
exponent (n51 to 10), as shown in Fig. 2. Withd52
and 3 equation (29) yields values ofx very near to
unity for all n; using d51, which differs more
strongly from the linear kinetic relation (Fig. 1), gives
somewhat smaller values ofx. However, Fig. 2 illus-
trates that the choice of transformation kinetics does
not significantly change the predicted strain
increments of equation (2), with the maximum differ-

Fig. 2. Dimensionless constantx from equations (28) and (29),
as a function of the stress exponentn and the kinetic exponent
d. Dashed line is the value ofx for the linear-kinetic approxi-

mation (equation (25)).
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ence (withd51) being only about 17% from the lin-
ear-kinetics approximation. Thus, the model of
Greenwood and Johnson [3] (equation (2)) is largely
insensitive to the exact kinetic path of the phase trans-
formation, provided that it occurs isothermally. This
conclusion may explain the consistency of data sets
from different studies of transformation-mismatch
plasticity which use different cycle times, tempera-
tures, and shapes, and which therefore probably have
different transformation kinetics [9, 10].

2.2. Non-linear model

If, in contrast with the previous section, we now
assume that the strain rateė is large compared to the
rate at which internal mismatch strains develop,ėMII ,
equation (18) reduces to:

gS ėėMII D 5 E
p/2

0

ė
ėMII

·F9
4
·
ė2

(ėMII )2G12n
2·n

· sinq· dq (30)

5
ė
ėMII

·F3
2
·
ė

(ėMII )
G12n

n

When this result is combined with equation (17) a
uniaxial creep power-law identical to equation (1) is
found. Thus, when the uniaxial strain rate is rapid
(i.e., the applied external stress is large), the material
deforms according to the creep law of the weaker
phase, and the phase transformation does not enhance
the deformation rate or change the stress exponent of
the deformation.

Equations (19) and (30) consider the uniaxial strain
rate during transformation-mismatch plasticity at low
and high strain rates, respectively. In order to employ
this deformation mechanism in a forming method, it
is desirable to maximize the strain rate without
inducing cavitation or plastic instabilities. These
instabilities increase with the stress exponent, which,
as demonstrated in the above discussion, diverges
from unity to a typical power-law value (e.g., 3–8 for
metals and alloys) as the strain rate (or applied stress)
is increased. The transition between these extremes is
of interest to determine, for example, the maximum
allowable applied stress during a forming operation.
In what follows, we describe a numerical method to
implement the above model at any strain rate or
applied stress level.

Without assumptions about the strain rate or stress
exponent, equation (18) cannot be solved in closed
form. However,g(ė/ėMII ) in equation (18) can be evalu-
ated numerically for selected values of the ratio
ė/ėMII andn, as shown in Fig. 3. Forn>1, g(ė/ėMII ) exhi-
bits a clear transition between a linear- and a power-
law in ė/ėMII , the transition occurring over the range
0.5,ė/ėMII ,5.

With numerical data such as those in Fig. 3, equa-
tions (17) and (18) can be used to determine the

Fig. 3. Numerical solutions of Eq. (18) for selected values of
the creep stress exponent,n.

instantaneous strain rate during the phase transform-
ation, for any applied stress. At each moment during
thermal cycling the applied stresss is known, the
mismatch strain-rateėMII is calculated from equation
(23) using physical data on the volume mismatch
DV/V and the evolution of the phase fraction,f, and
the temperature-dependent constantsA and n are
given by the isothermal creep law of the weak phase.
Using these parameters in equation (17) gives a
numerical value forg(ė/ėMII ), which can then be com-
pared with the numerical solutions of equation (18)
(i.e., Fig. 3) to determine the instantaneous strain
rate, ė. Finally, as described earlier (equation (21)),
the average strain rate during thermal cycling is found
by averaging the instantaneous strain rate over the
cycle duration:

ė 5
De
Dt

5
1
Dt

·E
Dt

0

ė· dt (31)

The models presented above are a generalization
of the established method of Greenwood and Johnson
[3], and should be capable of describing the strain
evolution during transformation-mismatch plasticity
of complex engineering alloys which do not transform
isothermally. In the following sections, we describe
experiments on Ti–6Al–4V which can be compared
with the above model for complex temperature-
dependent transformations.

3. EXPERIMENTAL PROCEDURES

The alloy Ti–6Al–4V was used in the form of cyl-
indrical billets, fabricated by cold- and hot-isostatic
pressing of elemental powders by Dynamet Tech-
nology (Burlington, MA), as described in [28]. The
as-received microstructures of these materials were
typical of powder metallurgy Ti–6Al–4V, with a col-
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ony or lath-typeα1β microstructure (see, e.g., [15,
19]). Tensile creep specimens were machined with
gauge length of 20 mm, and with circular cross-sec-
tion of 5 mm diameter. The shoulder radius between
the gauge and head sections was about 0.5 mm.

Isothermal creep and thermal cycling experiments
were conducted in a custom creep frame described in
[10], under an atmosphere of flowing purified argon.
Elongation of the load train was measured with a lin-
ear voltage-displacement transducer (LVDT) at the
cold end of the load train, and the specimen tempera-
ture was controlled at the gauge surface with a type-
K thermocouple and a closed-loop thermal controller.
A second thermocouple at the specimen head was
used to verify the measurements of the controlling
thermocouple.

The β-phase of titanium is significantly weaker
than theα phase near the phase transformation tem-
perature [29], and, as described earlier, transform-
ation-mismatch plasticity is controlled by defor-
mation of the weaker polymorphic phase. Therefore,
limited isothermal creep tests were performed at
1030°C, in the β-field of Ti–6Al–4V, to determine
the constitutive creep law of theβ-phase at the low
stresses of interest during transformation-mismatch
plasticity.

Two types of thermal cycling experiments were
performed; all of the thermal cycles were triangular,
with four-minute ramps (eight minutes for the com-
plete cycle):

O Thermal cycles were performed with a lower tem-
perature of 840°C and an upper temperature of
990°C (just below theβ-transus, 1000°C [30–32]),
at various applied stress levels between 0.5 and
10.7 MPa, in order to determine the stress-depen-
dence of transformation-mismatch plasticity.

O Under a constant applied stress ofs51.95 MPa,
one specimen was thermally cycled between 840°
and various upper temperatures, between 865 and
990°C. Finally, the isothermal creep rate at 840°C
was also determined at the same stress, after the
thermal cycling experiments.

All of the isothermal and thermal cycling experiments
were allowed to reach steady-state deformation before
creep or transformation-mismatch plasticity strain
rates were determined. The reported values of thermal
cycling strain rate are averages over several consecu-
tive thermal cycles at steady state.

4. RESULTS

4.1. Isothermal creep

Figure 4 shows the isothermal creep rate ofβ-phase
Ti–6Al–4V as a function of the applied uniaxial stress
at 1030°C. The strain rate follows a power-law with
a stress exponent near three. Taking the activation
energy for creep of unalloyedβ-phase titanium,

Fig. 4. Strain rate during isothermal creep,ė, or average strain
rate during thermal cycling,ė, as a function of applied stress
s. Thermal cycles were of symmetric triangular form, 8

minutes in duration.

Q5153 kJ/mol [29], the creep data in Fig. 4 can be
reasonably fitted with equation (1) withn52.8 and
A950.72 MPa22.8. These data are in agreement with
those reported in [33, 34] for hot working of Ti–6Al–
4V at similar temperatures (1000–1100°C) and higher
stresses (6.4–160 MPa).

4.2. Thermal cycling: stress dependence

The β-transus of Ti–6Al–4V is reported to occur
at about 1000°C [30–32], with theα1β field span-
ning from the transus to room temperature. The
present triangular cycles (between 840 and 990°C)
occurred completely below 1000°C, so the specimen
was continuously undergoing transformation, fromα
to β on heating, and fromβ to α on cooling. There-
fore, the strain rates measured during thermal cycling
are composed of only a single contributing mech-
anism, that of transformation-mismatch plasticity, and
no effort is needed to isolate the deformation due to
this mechanism (as done in e.g., [8, 16, 17]).

Figure 4 shows the thermal cycling strain rate,ė,
as a function of the applied tensile stress for triangular
thermal cycles over the range 840–990°C. At low
stresses (below about 5 MPa), the data in Fig. 4 fol-
low a linear trend in stress (i.e., the stress exponent is
near unity). In this range, the stress-normalized strain
increment developed after each 8-minute cycle is
found to be ∂De/∂s52.1 GPa21. This result is in
reasonable agreement with that of Kotet al. [5] , who
reported a value of 3.2 GPa21 for cycles between 760
and 981°C of unknown shape, but approximately 30
s duration. Furthermore, Schuhet al. [14, 15] used
8-minute triangular thermal cycles between 840 and
1030°C, and found∂De/∂s53.1 GPa21. This value is
somewhat larger than for the 8-minute triangular
cycles depicted in Fig. 4 (2.1 GPa21), but the former
cycles include a significant excursion into theβ-field,
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and therefore accumulated additional creep strain. At
higher stresses (above about 7 MPa, Fig. 4), the ther-
mal cycling strain rate diverges to obey a power-law
with a stress exponent very near to that observed dur-
ing isothermal creep,n<2.8.

In Fig. 5, the cycling strain incrementDe is shown
as a function of the upper cycle temperature,Tu,, with
a constant lower cycle temperature of 840°C, and
applied stresss51.95 MPa. The point at 840°C cor-
responds to the isothermal creep rate (ė 5
1.8·1027 s21) at that temperature and the same stress.

As the upper cycling temperature is increased, the
strain rate increases substantially; atTu5990°C, the
rate is 40 times that measured during isothermal creep
at 840°C.

5. DISCUSSION

As described in the following section, the present
experiments on Ti–6Al–4V form the basis for vali-
dation of the analytical model outlined earlier. In
what follows, we discuss the implementation of the
model for Ti–6Al–4V in predicting (i) the stress-
dependence of the cycling strain rate in both the linear
and non-linear regimes, (ii) the effect of a changing
upper cycle temperature, and (iii) kinetic features of
transformation-mismatch plasticity.

5.1. Stress dependence of transformation-mismatch
plasticity

The linear relationship between stress and thermal
cycling strain rate shown in Fig. 4 at low applied
stresses is in agreement with the prediction of equ-
ation (21), which is valid in the low-stress regime. At
larger applied stresses, the measured stress exponent
of |2.8 is the same as that for isothermal creep ofβ-
phase Ti–6Al–4V (Fig. 4), as predicted by the model

Fig. 5. Strain incrementDe developed after each thermal cycle
between 840°C andTu, normalized by the applied stress level,
s51.95 MPa. The experimental data points (with error bars
estimated from the sensitivity of the LVDT measurements) are
compared with the model predictions (solid line, equation

(21)).

at high stresses (equations (17) and (30)). In addition
to predicting the stress exponent, the model outlined
earlier is capable of predicting the absolute strain rate
during thermal cycling, as discussed below.

During the triangular thermal cycles in the range
840–990°C, the heating and cooling rates were 0.625
K/s, which are slow enough to ensure a state of ther-
modynamic equilibrium at all points during the cyc-
ling [30]. Thus, during these cycles, the diffusional
transformation of Ti–6Al–4V is limited not by dif-
fusion, but by the equilibrium thermodynamics of the
alloy. The cycles involve a transformation from about
23 to 99 vol%β-phase from 840° to 990°C, along a
path shown in Fig. A1 and discussed in Appendix
A. Furthermore, the volume difference between the
phases changes dramatically over this temperature
range, from |DV/V| 5 2.75% to 0.001%, as also
described in Appendix A and shown in Fig. A1. The
creep parameterA is also temperature dependent,
through the Arrhenius relationship of equation (6).
Thus, many of the parameters in the model (equations
(17) and (21)) are temperature dependent, and thereby
dependent on time through the heating/cooling rate.

We first apply the model to the low-stress, linear
regime, by evaluating equation (21). Because of the
complexity of equation (21) and the time- and tem-
perature-dependencies of the input parameters
(described above and in Appendix A), equation (21)
is evaluated here by numerical integration over the
triangular thermal cycle. Since the experimental ther-
mal cycles were symmetric in time, the integrations
of equation (21) for both the heating and cooling half-
cycles are identical. With the creep parameters
determined by experiment and described earlier, and
the phase fractions and volume differences given in
Appendix A, equation (21) can be evaluated without
adjustable parameters, giving a predicted strain rate
of ė/s54.3.1026 MPa21 s21, or the strain increment
developed after each 8-minute cycle,De/s52.1
GPa21. As shown by the solid line in Fig. 6, this pre-
diction is in excellent agreement with the experi-
mental data at low stresses. At the lowest stresses
investigated (,1 MPa), the agreement between model
and data is somewhat less accurate. This is most
likely due to transformation strain ratchetting (see,
e.g., [16, 35, 36]), which might present a small nega-
tive strain contribution, skewing the data at the low-
est stresses.

Using the same input parameters, the non-linear
model described earlier can also be implemented and
compared to the data in Fig. 4. Whereas equation (21)
gives a value forDe/s in a single calculation, the non-
linear model requires thatDe be calculated for a
selected value ofs, and this value is iterated to deter-
mine the full stress-dependence ofDe (or ė). The
results of these computations are shown as the dashed
line in Fig. 6, and compared with the experimental
data points. Without the use of any adjustable para-
meters, the model is quite accurate in predicting the
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Fig. 6. Transformation-mismatch plasticity data (from Fig. 2),
compared with the analytical models; the solid line is the pre-
diction of the linear model (equation (21)) and the dashed line
is the prediction of the full non-linear model (equations (17)

and (18)).

absolute value of the strain rate over the full range
of stresses, within a factor of|1.5.

5.2. Effect of the cycle profile

The data in Fig. 5, for different upper cycling tem-
peratures, were acquired using an applied stress of
s51.95 MPa. For the widest cycles (840–990°C), this
stress is within the linear deformation regime (the
same data point appears in Fig. 4). Therefore, to
model the effect of different thermal cycle profiles
shown in Fig. 5 the low-stress, linear approximation
of equation (21) is sufficient. The predictions of the
model are plotted as a solid line in Fig. 5, and are in
satisfactory agreement with the data. This agreement
is particularly good for the largest and smallest ther-
mal cycles, and within a factor of two at intermediate
values ofTu.

5.3. Transformation strains

The analytical model presented earlier predicts not
only the strain accumulated after each thermal cycle,
but the strain increment after each transformation.
Specifically, for the case of equilibrium triangular
thermal cycles, the model predicts equal strains to
develop on the heating and cooling transformations.
In a recent publication, Zwigl and Dunand [10]
presented a means by which to assess the strains
developed on each half-cycle, and thus to test this
prediction of the model (equation (21)). During the
heating and cooling half cycles, the measured LVDT
displacement (DD) is a combination of thermal
expansion or contraction (of the specimen and load
train), as well as the plastic deformation due to trans-
formation-mismatch plasticity. Confining our atten-
tion to low applied stresses, the half–cycle displace-
ments can be written:

DDh 5 DDthermal1 SDe
s Dh

·L·s (32a)

DDc 5 2DDthermal1 SDe
s Dc

·L·s (32b)

where the subscripts h and c refer to the heating and
cooling half cycles, respectively, andL is the gauge
length of the specimen. Through equations (32a) and
(32b) the slopes ofDD vs.s·L indicate the individual
half-cycle contributions to the deformation.

Fig. 7 shows a plot of equations (32a) and (32b)
for both the heating and cooling displacements during
triangular thermal cycles (between 840 and 990°C) of
a single Ti–6Al–4V specimen. The slopes of these
curves reflect the contributions from the two trans-
formations, and are found to be equal, within the sen-
sitivity of the measurement and line-fitting pro-
cedure, (De/s)h<(De/s)c<0.9 GPa21. The sum of
these two contributions,De/s<1.8 GPa21, is reason-
ably close to the directly measured value,De /s52.1
GPa21 and suggests error of at least±0.15 GPa21 for
each of the two transformation contributions determ-
ined by this analysis. This error is also reflected in
the intercepts of the trendlines in Fig. 7, which are
expected to be equal (equations (32a) and (32b)), but
are not. In summary, the strain increments after each
triangular thermal cycle are found to be composed of
two equal contributions from the transformations on
heating and cooling, in agreement with the prediction
of equation (21).

Fig. 7. Total measured displacements during heating and coo-
ling half-cycles, as a function of the product of applied stress
and specimen length. The slope of each data set indicates the
amount of transformation-mismatch plasticity deformation dur-
ing the heating and cooling half-cycles (equations (32a) and

(32b)).
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5.4. Kinetics of strain evolution

The analysis described in the previous section and
shown in Fig. 7 determines the deformation after each
half-cycle, averaging over many cycles at various
stresses and specimen lengths. However, equations
(32a) and (32b) can also be used to determine the
kinetics of strain evolution during a single individual
cycle, as described in the following.

Figure 8 shows the displacement histories for two
triangular thermal cycles performed on the same
specimen, at stresses of 2.6 and 1.0 MPa. These
stresses correspond to full-cycle strain increments of
De50.53% and 0.15%, respectively. The length of the
specimen at the start of these two cycles wasL525.9
mm and 26.1 mm, respectively, a difference of less
than 1%.

According to equations (32a) and (32b), two ther-
mal cycles on the same specimen at different applied
stresses exhibit identical displacements from thermal
expansion and contraction,DDthermal. Thus, provided
the length of the specimen is nearly unchanging, two
such cycles can be directly compared to determine
the instantaneous deformation due to transformation
plasticity. The difference between the two curves
shown in Fig. 8, then, reveals the kinetics of strain
evolution during a full thermal cycle.

Figure (9) shows the difference curve, found by
subtracting the lower-stress curve of Fig. 8 from the
higher-stress curve, and normalized by the total strain
difference accumulated over this cycle,De50.40%.
We note here that the curve in Fig. 9 is found by
taking a difference between two large signals
(displacement amplitude of 0.9 mm in Fig. 8), to
reveal a relatively smaller effect (less than 0.1 mm
displacement difference, Fig. 8); this procedure thus

Fig. 8. Displacement history during two thermal cycles with
similar specimen lengths, at applied stresses of 2.6 and 1.0

MPa, for the upper and lower curves, respectively.

Fig. 9. Deformation history during thermal cycling, found by
subtraction of the two displacement curves in Fig. 8, with esti-
mated error band in grey. The model predictions (dashed line)
are given by integration of equation 20 at each time during the

cycle.

results in significant uncertainty, as estimated by the
shaded band in Fig. 9. The same subtraction pro-
cedure was followed for several additional pairs of
curves such as those in Fig. 8, from which the error
band was estimated. The shape of the band in Fig. 9
suggests that the strain rate during thermal cycling
is somewhat more rapid at the higher temperatures.
Furthermore, the strain develops symmetrically in
temperature; this is expected from the equal half-
cycle contributions determined from Fig. 5, and pre-
dicted by the model (equation (21)) as well.

The linear transformation-mismatch plasticity
model discussed earlier predicts the instantaneous
strain rateė during thermal cycling (equation (20)),
which is then integrated over time to predict cycling
strain increments (equation (21)). However, equation
(20) can be integrated over an arbitrary time interval
to predict the kinetics of strain evolution during an
individual thermal cycle. Using the input parameters
described earlier and in Appendix A, integration of
equation (20) predicts the kinetics of strain evolution
shown in Fig. 9 as a dashed line, again scaled by the
total strain incrementDe. The agreement between the
model and the experiment is reasonable, given the
many uncertainties in the experimental curve, and
since no adjustable parameters were employed in
the model.

5.5. Limitations of the model

As shown in the preceding sections, the modified
version of Greenwood and Johnson’s model presented
earlier predicts the experimental trends measured on
Ti–6Al–4V with accuracy, including the total strain
increment after a full thermal cycle, the individual
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contributions of each transformation, and the kinetics
of strain accumulation during cycling. However, it
should be noted that this model, as well as Green-
wood and Johnson’s original model, are significantly
simplified. Shape forming of engineering alloys or
metal–matrix composites by transformation super-
plasticity may involve additional complexities which
are not specifically considered in these models, as dis-
cussed below.

First, the model discussed in this paper assumes
that internal strain develops entirely in the weaker
phase, which deforms without constraint under an
applied stresss. This simplification neglects the
possibilities that both phases deform, that the internal
stress may be partitioned between the phases, or that
the external biasing stress may be similarly par-
titioned. Stress concentrations near weak/strong inter-
faces are thus also ignored. Second, these models
make no effort at describing the microstructural mor-
phology during the transformation, and thereby neg-
lect issues of constraint on the deformation. For
example, an isolated volume of weak phase, sur-
rounded entirely by a rigid, non-deforming phase, is
constrained and unable to creep, despite experiencing
both internal and external stresses. Additionally, the
transformation of such an isolated volume to the
stronger phase will have only a weak and indirect
influence on the stress state in the remaining, remote
regions of weaker phase. Finally, thermal cycling and
superplastic elongation may lead to substantial micro-
structural changes, which impact the transformation
and/or creep behavior of the material in question. This
has been found particularly true for metal matrix
composites, where transformation superplasticity
leads to redistribution and/or realignment of the rein-
forcing phases [14, 15].

6. CONCLUSIONS

The model of Greenwood and Johnson [3]
describes uniaxial deformation of a material undergo-
ing an isothermal allotropic phase transformation,
while under a uniaxial stress (i.e., transformation-mis-
match plasticity or transformation superplasticity).
Despite a strong record of success, this model is
unsuitable for describing non-isothermal transform-
ations, which are of prime industrial interest for shape
forming of complex alloys. In the present work we
have extended Greenwood and Johnson’s model to
include temperature-dependence of all of the input
parameters. Experiments on Ti–6Al–4V were conduc-
ted to validate the model, and the following results
found:

O Slow triangular thermal cycles result in strongly
temperature- and time-dependent transformation
kinetics. The adapted form of Greenwood and
Johnson’s [3] model presented in this work takes
these variations specifically into account. The pre-
dictions of the model are in good agreement with

the experiments, without the use of adjustable
input parameters. The model is used to predict the
stress-dependence of the thermal cycling strain
rate, both at low stresses, where a linear, Newton-
ian, flow law is observed, and at higher stresses,
where the strain rate diverges to a power-law.

O The fraction of transformation product can be
determined by varying the amplitude of the ther-
mal cycles, leading to a thermal cycling strain rate
dependence on the thermal cycle profile. The new
analytical model presented here captures this
effect.

O The new model predicts equal contributions to
deformation upon the heating and cooling halves
of a symmetric triangular thermal cycle; the
present experiments validate this expectation.
Additionally, the kinetics of strain evolution dur-
ing a single thermal cycle are reasonably predicted
by the model.
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APPENDIX A

Equilibrium Volume Changes and Phase Fractions

The analytical model of transformation mismatch
plasticity presented in this article requires input of the
volume mismatch between the two polymorphic
phases (α andβ for Ti–6Al–4V), and the fraction of
each phase present at each temperature during the
thermal cycle. These data have been collected for Ti–
6Al–4V by Szkliniarz and Smolka [30], who perfor-
med high-temperature X-ray diffraction studies on

Fig. A1. Experimentally-determined volume mismatch andβ-
phase fraction of Ti–6Al–4V from [30], used as input to the

analytical transformation-mismatch plasticity models.
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this alloy at temperatures from 600°C (in the a1β
field) up to theβ-transus at 1000°C. From these dif-
fraction data, they determined the volume fraction
and the lattice parameters of each phase, from which
we have calculated the volume changeDV/V 5
(Vα2Vβ)/Vβ. The fraction ofβ-phase,fβ, and DV/V

from their study are shown in Fig. A1 as a function
of temperature.

For use in the analytical model, the data in Fig.
A1 were fitted with smooth polynomial functions and
evaluated at discrete temperatures during the thermal
cycle. The time-derivative of the phase fraction,ḟ,
was subsequently calculated numerically using a sym-
metric-difference approach with a time step of 0.1 s.
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