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Abstract-Two-dimensional cellular automaton computer simulations were carried out to model the 
geometric interaction between mobile, equiaxed particles and growing matrix grains. thus simulating 
crystallization (respectively, recrystallization, phase transformation or solidification) of a matrix material 
containing a mobile second phase (e.g. solid particles, liquid droplets or gas bubbles). The model allows 
the study of particle pushing by growing grains, which leads to particle accumulation and clustering at 
grain boundaries and triple points, and concomitant particle depletion within grains. Parameters explored 
are particle area fraction, particle settling speed, particle cluster mobility and grain nucleation rate under 
continuous nucleation conditions. These parameters are found to strongly affect the particle spatial 
distribution and clustering during and after crystallization. Conversely, the particles have no measurable 
effect on the grain shape or size. Finally, site-saturated nucleation at the boundaries of the simulation 
field is investigated, simulating e.g. solidification from crucible walls or recrystallization from sample 
edges. Pronounced clustering of particles takes place at grain boundaries and is further accentuated b!, 
particle settling. Copyright 80 1996 Acfa Metallurgica Inc. 

1. INTRODUCTION 

Nucleation, growth and impingement of spherical 

grains describe a variety of transformation phenom- 
ena in materials science, e.g. crystallization, recrystal- 
lization, eutectic solidification and some allotropic 
phase transformations. Analytical solutions by 
Johnson and Mehl [I], Avrami [2, 31 and Kol- 
mogorov [4] (JMAK) describe the volume fraction of 
crystallized grains as a function of time. However, 
these types of closed-form solutions are available 
only for simple cases such as continuous nucleation, 
site-saturated nucleation and continuously varying 
nucleation rates [5], and they do not describe the 
resulting grain geometry and topology. Computer 
simulations have been used by many researchers 
to explore more complex conditions (e.g. time- 
dependent nucleation or growth rates, localized 
heterogeneous nucleation, complex spatial boundary 
conditions for castings) as well as grain geometry and 
topology (e.g. grain size average and distribution, 
grain aspect ratio, grain boundary length and triple 
point geometry). They have been applied to twinning 
[6], allotropic phase transformations [7], crystalliza- 
tion or recrystallization [8-211 and solidification 
[22- 351. 

For many two-phase materials (e.g. precipitation- 
or dispersion-strengthened alloys and metal-, cer- 
amic- or polymer-matrix composites), crystallization 
or recrystallization of the matrix occurs in the 
presence of a second phase which is inert (i.e. 
insoluble and neither growing nor crystallizing). In 

the simplest case where the second phase is immobile, 
the kinetics of recrystallization or crystallization of 
the matrix can be strongly affected by the second 
phase through heterogeneous nucleation of matrix 
grains and through blocking of the motion of grain 
boundaries (Zener pinning and/or geometric im- 
pingement) [ 181. Computer simulations have been 
used by many investigators [3641] to examine the 
effects of a uniform dispersion of small equiaxed 
particles on grain nucleation and grain boundary 
pinning during recrystallization. Other investigators 
[5, 42-451 also simulated the recrystallization of a 
metal containing spatially nonuniformly distributed 
particles (e.g. stringers in rolled metals). Finally, 
computer models have been used to study the 
impingement effect between growing grains and 
continuous fibers [46-48], discontinuous fibers 
[49, 501 or equiaxed particles [49%51]. 

A more complex situation arises if inert particles 
are mobile and can be pushed by the pressure exerted 
by a moving grain boundary. While, to the best of our 
knowledge, this case has not been studied by 
computer simulation, many experimental obser- 
vations of particle pushing by growing grains have 
been made. In what follows. we give a few examples 
of particle pushing classified by matrix transform- 
ation and particle state. For a matrix undergoing a 
sol&solid transformation (e.g. allotropic transform- 
ation, recrystallization or crystallization from the 
amorphous state), particle pushing by moving grain 
boundaries has been reported for solid particles 
[52-551, liquid droplets [53] and gas bubbles [56]; 
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diffusional creep of metals containing fine precipi- 
tates can also lead to solid particle pushing by moving 
grain boundaries [.57, 581. For a matrix undergoing a 
liquid-solid transformation (i.e. solidification), push- 
ing of solid particles by grains has been observed for 
metals, water and organic liquids, as reviewed in 
[59-611. Pushing of liquid droplets by grains is also 
possible during solidification of systems containing 
immiscible liquids with different melting points 
[59,60]. Finally, gas bubbles can be pushed by grains 
(e.g. solidification of water with air bubbles or 
solidification of semi-killed steel containing CO 
bubbles [62]). When homogeneously distributed 
particles are pushed during recrystallization or 
solidification, grain boundaries are enriched with 
particles and grain interiors are depleted. The 
resulting inhomogenous microstructure is usually 
undesirable: for solidified metal matrix composites 
for instance, particle-rich regions are embrittled, 
while particle-poor regions are weakened. 

In the present article, we use cellular automata 
simulations to examine particle pushing by growing 
grains nucleated under homogenous, continuous 
conditions or heterogenous, site-saturated con- 
ditions. We investigate the effect of grain nucleation 
rate, particle area fraction, particle settling rate and 
particle mobility upon the particle distribution and 
the composite final microstructure. 

2. COMPUTATIONAL PROCEDURES 

We use a two-dimensional cellular automaton 
approach to simulate recrystallization, introduced 
by Hesselbarth and Giibel [15] for single-phase 
materials and extended by Pezzee and Dunand [49] 
for two-phase materials (i.e. a matrix containing 
immobile, inert particles or fibers). Two- and 
three-dimensional cellular automata have also been 
used for solidification simulation without particles by 
Brown and coworkers for dendritic growth [25-271 
and by Zhu and Smith [28,29] and Rappaz and 
coworkers [30-351 for equiaxed and dendritic growth. 
For brevity, we will use in the following the general 
term “crystallization” to cover the particular cases of 
crystallization, recrystallization, solidification and 
transformation. 

Our cellular automaton consists of a two-dimen- 
sional field of 65,536 (2562) square cells oriented 
along orthogonal axes with periodic boundary 
conditions. Each cell, which can represent either the 
matrix or a second-phase particle, is updated at 
discrete time-steps according to local, deterministic 
topological rules. Matrix cells, which can have two 
possible states (crystallized or uncrystallized), are 
subjected during each time-step to two sequential 
events: growth and nucleation. 

In the nucleation event, nuclei consisting of a single 
crystallized cell are distributed randomly on the field 
(but with no pair of nuclei as nearest neighbor), 
according to two possible regimes. In the first regime, 

corresponding to homogenous nucleation without 
particle-stimulated nucleation, nuclei are distributed 
at each time-step over the whole field at a constant 
area fraction. The total number of new nuclei added 
to the field thus decreases with increasing time-steps 
as the crystallized area fraction (which is unavailable 
for nuclei) increases. The other nucleation regime 
investigated is local site saturation, where all nuclei 
are distributed in the first time-step within a 
single-cell-wide strip at the four borders of the field. 
This regime simulates heterogeneous solidification 
from the walls of a casting. 

In the growth event, each crystallized matrix cell 
remains unchanged, while those uncrystallized matrix 
cells with at least one of their nearest neighbors 
belonging to a grain become part of that grain. If an 
uncrystallized cell has crystallized neighbors from 
different grains, it becomes part of any of the 
competing grains with the same probability. As 
described in more detail in [15,49], an alternating 
neighborhood of six cells is chosen for the growth 
event, resulting before impingement in equiaxed, 
octagonal grain shape. This shape approximates the 
circular (respectively, spherical) shape observed 
during crystallization, recrystallization and eutectic 
solidification of isotropic materials; however, more 
complex rules must be defined for dendritic 
solidification, as shown in e.g. [25, 331. 

Particle cells, which have a single state, are 
assigned randomly on the whole field at time t = 0. 
A particle does not move if it is not in contact with 
a matrix grain, i.e. if none of its eight nearest 
neighboring cells belongs to a grain. However, if a 
particle cell (say cell A) has at least one neighbor as 
a crystallized grain cell, it is moved to a neighboring 
uncrystallized matrix cell (say cell B) by assigning to 
cell A the uncrystallized matrix status and to cell B 
the particle cell status. If more than one uncrystal- 
lized neighbor cell exist, the particle cell moves 
randomly to any of the available uncrystallized cells. 
However, to prevent the particle (now in cell B) from 
moving back to the position (cell A) it left in the 
previous time-step (which can lead to early engulfing 
of the particle by the grain), the uncrystallized 
neighbor cell which has the most crystallized 
neighbors (in most cases cell A) is not considered as 
a new site for the particle, unless it is the only 
possibility. If all the neighboring cells are crystallized 
or occupied with other particles, the particle is 
considered engulfed by the grain and/or immobilized 
by neighboring particles. 

As particles accumulate at a moving grain 
boundary, they contact and form clusters, defined as 
an aggregate of at least two particles. We consider 
two extreme cases: zero mobility of clusters and 
infinite mobility of clusters. In the former case, as 
soon as two particles contact, the resulting cluster 
becomes immobile and is engulfed by the advancing 
grain. This scenario corresponds to the case of 
crystallization with particle coalescence (e.g. for 
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(1) immobile particles 
(2) no settling or aggglomeration 
(3) no agglomeration 
(4) no settling 
(5) repeat once if agglomeration occurs 
(6) end of time-step (continuous nucleation) 
(7) end of time-step (saturated nucleation) 

* update time-step 

Fig. 1. Program flowchart with various substeps, each of 
which is applied to the whole field. 

droplets and bubbles): since the particle mobility 
is inversely proportional to the third or fourth power 
of the particle radius [55], coalescence strongly 
reduces the aggregate mobility. In the second case, 
particle clusters are assumed fully mobile (e.g. for 
solid particles which do not merge upon contact 
during matrix crystallization [52255] or solidification 
[59-611). For a given time-step, the particle pushing 
procedure is repeated until all particles in the cluster 
have had the opportunity to move once (and only 
once). 

Finally, settling or floating of particles can occur 
during solidification when particles experience a 
buoyancy force significantly larger than the viscous 
drag force, as often observed during gravity or 
centrifugal casting of liquid metals containing 
ceramic particles or gas bubbles [59963]. In the 
present simulation another substep is added to 

simulate the effect of settling: each particle moves 
randomly to any of the three neighboring cells 
directly below its position, unless they are occupied 
by a grain or another particle. 

Figure 1 shows a flowchart of a complete time-step 
consisting of the substeps described above. each of 
which is applied to the whole field before the next 
substep is considered. As indicated by arrows, some 
or all substeps related to the particles (i.e. pushing, 
clustering and settling) can be bypassed. After each 
time-step, the area fraction of crystallized matrix s is 
computed as the ratio of crystallized matrix area to 
total matrix area. Furthermore, for each particle the 
dimensionless distance to the nearest particle : 
normalized by the particle length is determined. At 
the end of the simulation, the grain size A (measured 
in number of cells) and the grain aspect ratio R. 
defined as the ratio (larger than I) of the projections 
of the grain along the two orthogonal axes 
determined by the cell shape, are calculated for each 
grain. All grain statistical results were determined 
from at least two simulations carried out with the 
same parameters, but different spatial distributions of 
particles and nuclei. 

Various parameters related to grains and particles 
were investigated: grain nucleation regime (hom- 
ogenous or site-saturated), grain nucleation rate h’. 
particle area fraction J; particle cluster mobility m 
(m = 1 corresponds to full aggregate mobility. ~7 = 0 
to zero mobility) and particle settling ratio .c. The 
latter parameter is defined as the number of times the 
settling substep (Fig. I) is repeated within a single 
time-step. i.e. the ratio of particle settling rate to grain 
growth rate. Each parameter was individually varied 
while keeping the remaining constant at the baseline 
values given in Table I. 

3. RESULTS 

Figures 2(at(c) illustrate the growth and impinge- 
ment of three isolated grains nucleated simul- 
taneously in a matrix containing nonsettling, 
nonagglomerating particles with area fraction 
f= 0.0625. The particles are represented by filled cells 
and the grain borders are shown as lines. In the 
following, we use the term “border” for the interface 
between a grain and the uncrystallized matrix and the 
term “boundary” for the interface between two 
crystallized grains. In the early stage of growth 
[Fig. 2(a)] individual particles are pushed by the grain 
borders. Just before grain impingement [Fig. 2(b)] 
particles have accumulated at the borders and form 

Table I Grain and particle parameters investigated under condltmns of continuous 
nucleation (baseline values are in bold characters) 

Grain nucleation rate N” 2 x IO-4 4 x IO-’ 1.6 x IO-’ 6.4 x IO ’ 
Particle area fraction f h 0 0.015625 0.03125 0.0625 
Particle cluster mobilitv w+ 0 1 
Particle settling ratio sh 0 1 3 5 

“Nuclei per unit area and time 
*Dimensionless parameter. 
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individual clusters. At the end of grain impingement 
[Fig. 2(c)], all particles originally within the triangle 
formed by the three grain nuclei have been trapped 
at the newly formed grain boundaries. 

In Fig. 3 the cellular field is shown for continuous 
nucleation conditions with the baseline conditions 

?? (IV,, = 4 x 1O-4 nuclei per unit area and time, 
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a as shown in Figs 4(a) and (b), an increased nucleation 
rate (N = 16 No) leads to a more homogenous 
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because most particles are in clusters. The average 
. . . . * . ’ . ’ *- .: value zaV steadily decreases, as indicated on the top of 
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m :. . . . : : - . As shown in Fig. 7, the area fraction of crystallized . . * . . - .- . - -. . . *- . . grains x is found to vary with time t according to the 
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- . classical JMAK equation: 

x = 1 - exp( -kt”), (1) 

where n is the Avrami exponent and k is a constant 

. . .- . containing the nucleation rate N and the growth rate 
G. For all particle and grain parameters explored 

’ (Table l), the simulations give an Avrami exponent 
n = 3.0 within the interval 0 < x < 0.98, as analyti- 
cally predicted by the JMAK theory for two-dimen- 
sional grain growth under continuous nucleation 
conditions. We note that time, expressed in Figs 5-7 
in units of time-steps, can also be considered as a 
dimensionless parameter: a time-step is the unit time 
for which a grain radius grows by a unit length. 

Grain size average and distribution as well as grain 
aspect ratio average and distribution are insensitive 

. . .I to the particle area fraction. The average grain size is 

. -. A = 212 f 2 cells, in agreement with values reported 

Fig. 2. Growth of three isolated grains in the presence of 
mobile particles (f= 0.0625, m = 1, s = 0): (a) after 18 
time-steps, (b) after 28 time-steps and (c) after 38 time-steps. 



SHELTON and DUNAND: COMPUTER MODELING OF PARTICLE PUSHING 4575 

Fig. 3. Field containing mobile particles for baseline parameters (N = No = 4 x lO-4 nuclei per unit area 
and time. f= 0.0625, nz = I, s = 0): (a) after 13 time-steps and (b) after 24 time-steps. 
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(b) 
Fig. 4. Field containing mobile particles (N = 16 NO, f = 0.0625, WI = 1, s = 0): (a) after 3 time-steps and 

(b) after 8 time-steps. 
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Fig. 5. Time dependence of the average interparticle distance 
-.,, (normalized by z~,.o, the value at t = 0) for different 

particle area fractions ,f (N = No, m = 1, s = 0). 

earlier [49] for immobile particles and close to the 
theoretical values given by Gilbert [64] for a matrix 
crystallizing in the absence of particles: 

A = 1.1371 (G/N)Z’, (2) 

which predicts A = 217 cells for values of G = 1.055 
cell per unit time and N = 4 x 1O-4 nuclei per unit 
area and time. The former parameter was found 
experimentally by plotting the area of a single 
octagonal grain as a function of time and determining 
the growth rate of a circular grain of the same area 
(G = 1 cell per unit time would be expected for 
circular grains). 

Figure 8 corresponds to the case where particles are 
settling at a rate five times higher than the grain 
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Fig. 6. Distribution of interparticle distance z (normalized 
by particle size) as a function of time for baseline parameters 
(N = NO, f = 0.0625, 112 = 1, s = 0). The respective average 

values z,~ are indicated with arrows. 
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Fig. 7. JMAK plots of the matrix fraction crystallized .Y as 
a function of time t for different particle area fractions ,f 

(N = :v,,, nr = 1. s = 0). 

growth rate (s = 5) with the other parameters at 
baseline value. With about half of the structure 
crystallized [Fig. 8(a)], particles have settled on the 
grain borders moving in the direction opposite to the 
settling direction, while borders moving in the same 
direction are devoid of particles. As a result, the final 
microstructure [Fig. S(b)] exhibits pronounced ag- 
glomeration of particles. Figure 9 shows the effect of 
different settling ratios s on the time dependence of 
the average particle nearest neighbor distance z,, 
Also shown in this figure is the case where particles 
settle in the absence of any grains pushing them 
(s = 1, N = 0). 

Figures 10(a) and (b) show the microstructure 
resulting from zero particle cluster mobility (m = 0): 
clusters form early and are engulfed within the 
growing grains [Fig. 10(a)], resulting in a final 
structure showing a rather homogenous distribution 
of particle clusters [Fig. 10(b)]. The time dependence 
of z,, is not reported, because it is not significantly 
different from that of full cluster mobility (m = I, 
Fig. 5). 

For the standard particle area fraction ,f‘= 0.0625, 
no change in grain area average or distribution is 
found upon settling (s = I, 3, 5) or upon cluster 
immobility (m = 0). For all cases investigated, the 
average grain aspect ratio is near unity, as expected 
for equiaxed grains growing within a field of equiaxed 
particles [49] and the distribution of grain aspect 
ratios is independent of the simulation parameters. 

To simulate solidification from die walls, site- 
saturated nucleation at the edge of the square field 
was considered for a particle area fraction 
f = 0.03 125 with 150 grains nucleated during l.he first 
time-step only. As seen in Fig. 11 for the case of 
nonsettling particles (s = 0), columnar growth of 
grains results from competition between grains 
nucleated simultaneously. Particles are initially 
pushed by each of the four fronts [Fig. 11 (a)] and are 
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(a> 

(b) 
Fig. 8. Field containing mobile particles under rapid settling conditions (N = NO, f= 0.0625, m = 1. 
s = 5): (a) after 13 time-steps and (b) after 22 time-steps. The settling direction is indicated with an arrow. 
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Fig. 9. Time dependence of the average interparticle distance 
3,, (normalized by z,,~.o, the value at t = 0) for different 

particle settling rates s (N = NO, ,f= 0.0625, m = 1). 

then trapped at grain boundaries [Fig. 1 l(b)]. The 
final microstructure exhibits a heavily clustered 
distribution of particles located mainly along the 
grain boundary diagonals formed upon the impinge- 
ment of grains growing in different directions, When 
particles settle more rapidly than the growth of grains 
(s = 3), particles accumulate mostly along the front 
moving in the direction opposite to the settling 
direction [Fig. 12(a)]. Pronounced accumulation 
results at the grain boundaries corresponding to this 
front [Fig. 12(b)], resulting in a microstructure 
exhibiting a few large clusters, while the rest of the 
field is virtually particle-free [Fig. 12(c)]. 

4. DISCUSSION 

While the qualitative agreement between the 
simulated microstructures presented above and 
experimental microstructures (e.g. [59, 65-671) is 
encouraging, our simulations can provide only a 
rough model of real materials systems, because of the 
many simplifying assumptions listed below: 

??octagonal grain shape of isolated grains: whereas 
this shape is close to the ideal circular shape 
expected from equiaxed growth, the octagonal 
grain shape in the present simulation reflects the 
orthogonal nature of the cellular grid and the 
simple growth rule used. Furthermore, while 
circular grains are observed in the two-dimen- 
sional crystallization of amorphous thin films 
[68], only eutectic alloys exhibit circular (respect- 
ively, spherical) grains upon solidification, 

??constant and isotropic growth rate: this condition 
corresponds to isothermal growth and also 
assumes that the particles have no pinning effect 
on the grain boundaries and that growth is 
independent of direction. 

??constant nucleation rate and random nucleation 
sites: in real systems, nucleation often occurs at 
heterogenous sites (previous grain boundaries for 
recrystallization, particles for recrystallization 
and solidification, container walls for solidifica- 
tion) and is therefore neither random nor 
constant. 

??uniform particle size and shape: real systems 
typically display a continuous distribution of 
particle size and shape and therefore a distri- 
bution of particle mobility. 

??limited number of grains: in a 256’ array, a total 
of ca 300 grains are formed for the baseline 
nucleation rate, thus limiting the statistical 
accuracy of each simulation. We used periodic 
boundary conditions to mitigate that problem 
and established that repeatability was good by 
carrying multiple simulations under the same 
parametric conditions, 

Finally, the two-dimensional simulations in the 
present paper are applicable only to cases where grain 
thickness is much smaller than grain diameters, e.g. 
for crystallization of thin films or slender bodies 
such as plates and shells. As discussed by Humphreys 
and Hatherly [18], extrapolation from two- to 
three-dimensional results may lead to erroneous 
conclusions. 

Despite the above reservations, we believe that 
computer simulations of structural evolution, such as 
those presented above or published by the authors 
cited in the Introduction, are useful and relevant 
because they provide a qualitative and quantitative 
understanding of elementary mechanisms (e.g. 
particle pushing, settling and agglomeration) operat- 
ive in a complex environment (e.g. impinging 
particles and impinging grains) and because they 
allow the investigation of each system parameter 
separately, a difficult task in real materials systems. 
As pointed out by Humphreys and Hatherly [IQ 
“perhaps at this time, one of the most useful roles of 
computer simulations is to draw attention to areas 
where further theoretical and experimental work are 
needed”. 

4.1. Single grains 

Figures 2(a)-(c) illustrate the mechanisms of 
particle pushing and clustering for the simplified case 
of three equidistant grains nucleated simultaneously. 
As reflected by the increasingly ragged morphology 
of the borders with increasing time, particles have a 
small but noticeable effect on the morphology of 
grain borders pushing them. This effect stems from 
the geometric impingement of the particle clusters, 
explored in detail in a previous publication (491 for 
immobile particles. 

Figures 2(a)-(c) also show that, despite the initially 
random particle distribution, agglomeration of 
particles rapidly occurs at the grain borders. These 
clusters are originally only a single particle thick 
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tb) 
Fig. 10. Field containing mobile particles with zero cluster mobility (N = NO, f = 0.0625, tn = 0, s = 0) 

(a) after 13 time-steps and (b) after 22 time-steps. 



Fig. 11. Field containing mobile particles with 150 
grains nucleated under site-saturated conditions at the 
field borders (f= 0.03125, m = 1, s = 0): (a) after 40 
time-steps, (b) after 80 time-steps and (c) after 128 

time-steps. 

Fig. 12. Field containing mobile, settling particles with 150 
grains nucleated under site-saturated conditions at I he field 
borders (.f‘= 0.03125, m = I, s = 3): (a) after 40 time-steps. 
(b) after 80 time-steps and (c) after 128 time-steps. The 

settling direction is indicated with an arrow. 
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[Fig. 2(a)], since motion of particles parallel to the 
border during pushing favors spreading of the cluster. 
However, as particle clusters grow, the rate of particle 
accumulation by each cluster increases with its 
projected area, while the rate of lateral spreading 
remains constant. Therefore, clusters thicken and 
become partially engulfed by the grain pushing them 
[Fig. 2(b)], but are still mobile since the computing 
algorithm (Fig. 1) repeats the pushing step until all 
particles in the clusters have had the opportunity to 
move once. In rare cases for large clusters impinging 
deeply into grains, engulfing of individual particles 
occurs [Fig. 8(b)]. 

Particles can be trapped at grain boundaries when 
two flat grain borders growing in opposite directions 
capture the respective particles as a result of a frontal 
collision (upper two grains in Fig. 2). However, in 
real systems, grain borders are rarely flat and the 
collision of two borders usually leads to a groove. 
Particles can be pushed without trapping by such 
grooves when borders move at a right angle to each 
other, as seen in Fig. 2(c); the groove eventually 
evolves into a flat front. As illustrated in Fig. 2(c), 
particles then collect at grain triple points, since it is 
the last place to crystallize. 

4.2. Continuous nucleation 

4.2.1. EfSect of particle and grain density. As 
shown in Fig. 2, particle clustering takes place in two 
successive stages: (i) particle collection by a grain 
border from a grain growing freely in the matrix and 
(ii) particle concentration at triple points by grooves 
resulting from the collision of two grains. If particles 
are trapped as soon as two borders collide to form a 
grain boundary or if the grain nucleation rate is high 
enough that full crystallization is reached shortly 
after significant grain impingement occurs (Fig. 4), 
stage (ii) is inactive and particles are randomly 
distributed on the grain boundaries. Assuming that 
all grains have the same area A, the average density 
of particles at grain boundaries p (expressed in 
particles per unit length) is: 

2.f.A 
p=- a.P ’ 

where f is the particle area fraction, a is the particle 
area and P is the grain perimeter, which can be 
expressed as: 

P = k.A”2, (4) 

where k is a geometric factor depending upon the 
shape of the grains. For squares, k = 4, and for 
hexagons, k = (8J3)1’2 = 3.72. Introducing equation 
(3) into (4) gives: 

P= 
2.f.A’/2 

a.k 

For p = 1, clustering is unavoidable since the totality 
of the boundaries length is covered by particles. To 
reduce clustering, the particle area fraction f can 

be decreased or the particle area a or the grain 
nucleation rate N (which is inversely proportional to 
the grain area A) increased. 

With parameters corresponding to the standard 
conditions in Fig. 3 (k = 3.72, f = 0.0625, a = 1 cell, 
A = A = 212 cells), equation (5) predicts p = 0.49 
cell-“‘, i.e. particles cover almost half the line length 
provided by the grain boundaries. While the grains 
exhibit a broad size distribution and the assumption 
A = A is thus very approximate, this simple 
calculation shows that clustering is expected to be 
mild for all particle area fractions examined in the 
present simulations, if particles are trapped as soon 
as their respective grain borders collide with other 
grain borders. Figure 3(a) indeed shows that clusters 
at grain borders are small, typically two cells, for 
grains which have not yet impinged with other grains. 
For the parameters corresponding to Fig. 4 with high 
grain nucleation rate N = 16 No (values as above, 
except A = A = 36 f 0.1 cells); equation [5] predicts 
p = 0.20 cell-“2. Clustering in the final microstructure 
[Fig. 4(b)] is thus expected to be significantly reduced 
as compared to the standard conditions [Fig. 3(b)] 
with a higher particle grain boundary density 
p = 0.49 cell-1’2. 

In stage (ii), particles are pushed towards grain 
boundary nodes (triple or quadruple points) by grains 
which have impinged with each other, so that the 
corresponding grain boundaries are devoid of 
particles. Assuming a regular lattice of monosized 
grains with all particles at nodes, the density of 
particles at grain boundary nodes is: 

pl=z&f+ 

where m is the number of grains meeting at a node 
and M is the number of sides of the grains. For 
square grains, m/M = 1 and for hexagonal grains, 
m/M = l/2. With m/M = l/2, f = 0.0625 and 
A = 212 cells, equation (6) predicts p’ = 6.6, i.e. 
about seven particles per triple points. Figure 3(b) 
indeed shows that virtually all grain boundary nodes 
exhibit large clusters, with particles spreading from 
the node along each grain boundary. As a result, 
grain boundaries are mostly devoid of particles near 
their middle points between two nodes. For the 
smallest particle area fraction (f = 0.015625) or 
highest nucleation rate (N = 16 No, A = 36 cells) 
investigated, clustering is expected to be mild, as 
equation (6) predicts 1 or 2 particles on average at 
each node. Figure 4(b) (N = 16 No) indeed shows that 
clustering is much reduced compared with Fig. 3(b) 
(N = No). 

Clustering is most easily described in a quantitative 
manner by the dimensionless particle nearest-neigh- 
bor distance z calculated for each particle, from 
which an average value z,, (Fig. 5) and a distribution 
(Fig. 6) can be plotted as a function of time. For the 
standard conditions, the initial distribution, corre- 
sponding to the random location of particles before 
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any grain nucleates, is positively skewed and has an 
average value zav = 3.5 (Fig. 6). This value can be 
compared with the upper bound z~“,,,,~~ corresponding 
to particles arranged on a regular lattice: 

z,,,,,, = (cIf’)-1.2, (7) 

where c is a geometric constant (c = 1 for a square 
lattice, c = J3/2 for a triangular lattice). For the 
standard parameters and these two geometric 
constants, equation (7) predicts z,,,,,, = 4 and 
=ri.max = 4.3, respectively, which are, as expected, 
higher than the initial value z,, = 3.5 resulting from 
a random distribution. The decrease of zav plotted in 
Fig. 5 as a function of time is due to the clustering 
of the particles pushed by the grains as crystallization 
proceeds. The initial z distribution becomes broader 
when only a fraction of the particles have been 
pushed (t = 11, Fig. 6) and then narrows near the 
average value z,, = 1.25 at the end of crystallization 
(t = 22, Fig. 6). We note that the trough in the 
distribution between z = 1.5 and z = 2 in Fig. 6 is an 
artifact resulting from the cellular nature of the grid: 
with the definition: 

where a and b are the projected distances between the 
two particles on the two orthogonal axis, no value of 
Z exists in the interval ]J2;2[ if a and b are integers. 

4.2.2. Effect qf particle mobility. As settling 
occurs, particles accumulate preferentially on those 
grain borders which are perpendicular to, and move 
in the direction opposite to, the settling direction. 
Particle accumulation at grain borders (which is more 
pronounced, the larger the gap between grains 
[Fig. 8(a)]) inhibits the motion of grain borders as 
they become covered with particles. The final 
microstructure thus exhibits pronounced accumu- 
lation of particles at some grain triple points and 
near-complete depletion of particles from most grain 
boundaries and from those triple points resulting 
from particle-free borders [Fig. 8(b)]. During the 
course of crystallization, the average particle nearest 
neighbor distance z,, decreases more rapidly than for 
the case where no settling takes place, as shown in 
Fig. 9. In this figure, the time dependence of zab is 
shown for increasing settling speed (s = 1, 3 or 5 with 
N = No) and compared with two limiting cases: (i) 
settling in the absence of any grain (s = 1, N = 0) and 
(ii) absence of settling in the presence of grains (s = 0, 
N = No). For short times the curves of z,,, for s = l-5 
follow that of case (i): because the grains are too 
small to interact significantly with the particles, z,, 
decreases as a result of random settling motion of 
particles. For long times the curves of z,, for s = l-5 
tend towards that of case (ii): because settling is 
exhausted, the average particle nearest neighbor 
distance is controlled by particle pushing by borders. 
While the final value of zsr does not significantly vary 
with and without settling (Fig. 9), comparison of the 
final microstructure for s = 0 (Fig. 3) and s = 5 

(Fig. 8) shows that clustering (when defined as the 
average cluster size) is much more important in the 
latter case. 

Cluster mobility has a pronounced effect on overall 
particle distribution, as shown in Fig. 10 depicting the 
case for which clusters of at least two particles have 
zero mobility (m = 0). While the average particle 
nearest neighbor distance is near unity (single 
particles are rare), the average nearest neighbor 
distance between clusters (most of which are particle 
pairs) is much larger. The majority of the pair clusters 
are found within grains, since these clusters are 
engulfed as soon as they are formed. At steady state, 
the number of particle pair clusters is expected to be 
half that of single particles and the average nearest 
neighbor distance between clusters is thus higher by 
a factor J2 than the initial particle nearest neighbor 
distance. However, the region near the nucleus of 
each grain is depleted (because clusters start to form 
only after some particle pushing has taken place), 
while the grain boundaries are enriched both with 
clusters (formed when particles pushed by the two 
borders met) and with single particles (trapped before 
they formed a cluster). As expected from the lack of 
mobility of clusters, no particle accumulation at triple 
point occurs. 

4.3. Saturated nucleation at borders 

Unlike the equiaxed grain structure resulting from 
isotropic continuous nucleation (Fig. 3) grains 
formed under saturated nucleation conditions at the 
edge of the field are columnar (Fig. 11) as a result of 
growth and impingement with neighbors. As grains 
growing in different directions contact along the 
diagonals of the field, they impinge and the number 
of grains decreases with time. As illustrated in 
Fig. 1 l(a), particles are pushed by the four fronts and 
become trapped at these grain boundary diagonals. 
The particles pushed by each front far from the 
diagonals accumulate at grain boundaries perpen- 
dicular to the front, where the clusters are still mobile 
[Fig. 1 l(b)]. The clusters, however, partially prevent 
the motion of the grains which can be overtaken by 
larger neighboring grains: this results in columnar 
grains ending before they reach the diagonals 
[Fig. 1 l(b)]. The final microstructure exhibits a 
majority of the particles trapped at grain boundary 
diagonals and at grain boundaries near the center, in 
good qualitative agreement with experimental obser- 
vations during solidification of melts containing solid 
particles [65]. The structure is markedly different 
from that produced under continuous nucleation 
conditions [Fig. 3(b)]; fewer, larger. more elongated 
grains exist, with grain boundaries either completely 
covered with particles or completely devoid of them. 

Settling further exacerbates the inhomogenous 
distribution of particles (Fig. 12). The front growing 
in the same direction as settling (but slower than the 
particles since s = 3) is flat and devoid of particles 
[Figs 12(a, b)]. The two fronts growing in a direction 
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perpendicular to the settling direction push the 
particles and engulf only a few of them. Particles thus 
accumulate on the front moving in the direction 
opposite to the settling direction, disrupting its 
planarity and forming very large clusters at grain 
boundaries. The particles impinge more on the 
smaller grains, with the result that larger neighbors 
can overtake both the smaller grains and their 
associated particles. In Fig. 12(b), the number of 
grains growing on the particle-covered front is about 
half of that on fronts without particles. The final 
microstructure [Fig. 12(c)] exhibits a few very large 
particle clusters located near the “bottom” of the field 
and is much more inhomogenous than for the case of 
continuous grain nucleation [Fig. 8(b)]. 

3. 
4. 

5. 

5. CONCLUSIONS 

A two-dimensional cellular automaton model 
developed by Pezzee and Dunand [49,50] for the 
simulation of crystallization (or alternatively recrys- 
tallization, allotropic transformation or solidifica- 
tion) of a matrix containing inert, immobile particles 
is extended to the case of mobile particles. 

Particle pushing by growing matrix grains under 
continuous nucleation conditions is studied for 
different values of the following parameters: grain 
nucleation rate N, particle area fraction f, particle 
settling ratio s and particle mobility m. The 
crystallization kinetics and the size and shape of 
grains are unaffected by these parameters, with the 
exception of the expected decrease of grain area with 
increasing N. However, particle spatial distribution 
and particle nearest neighbor distance during and 
after crystallization vary widely as these parameters 
are changed. Particle enrichment at grain boundaries 
and grain triple points, which results from the 
trapping of particles pushed by growing grains, is 
reduced by increasing the grain nucleation rate and 
by decreasing the particle area fraction, settling ratio 
or mobility. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 
22. 

With site-saturated nucleation conditions at the 
boundaries of the simulation field, columnar growth 
of grains results, simulating e.g. solidification from 
container walls or recrystallization from sample 
edges. Strong clustering of particles takes place at 
grain boundaries and is further accentuated by 
particle settling. 
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