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A powder-level, finite-element model is created to describe densification, as a function of applied
stress during uniaxial hot pressing, of CP-Ti and Ti-6Al-4V powders with spherical or sphe-
roidal shapes for various packing geometries. Two cases are considered: (1) isothermal densi-
fication (in the a- or b-fields of CP-Ti and in the b-field of Ti-6Al-4V) where power-law creep
dominates and (2) thermal cycling densification (across the a/b-phase transformation of Ti-6Al-
4V) where transformation mismatch plasticity controls deformation at low stresses. Reasonable
agreement is achieved between numerical results and previously published experimental mea-
surements and continuum modeling predictions.
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I. INTRODUCTION

HIGH-temperature powder compaction is a
well-established method to create complex shapes with
good mechanical properties from Ti-6Al-4V, which are
the work-horse titanium alloys in the aerospace[1,2] and
biomedical industries.[3–6] Powder densification at in-
creased temperature is accelerated by the application of
an external stress,[7–10] through deformation at contact
points between powders, which is controlled by the
power-law creep mechanism with the constitutive equa-
tion

_ex ¼ C � rn
x ½1�

where _ex is the steady-state (secondary) uniaxial strain
rate, rx is the uniaxial stress, C is a constant incorpo-
rating an Arrhenius temperature dependence
(C = 4.8 9 10�7 MPa�2.8s�1 for Ti-6Al-4V at 1293 K
(1020 �C)[11,12]), and n is the creep stress exponent
(n = 2.8 for Ti-6Al-4V[12]). Based on Eq. [1], equa-
tions predicting densification kinetics (density vs time)
can then be derived[7–9,13–16] for an assembly of spheri-
cal powders with initial relative density q0 subjected to
an external stress r in a uniaxial die pressing experi-
ment. The densification rates _q for initial stage densifi-
cation (relative density q < 90 pct, where deformation
of powders at contact points and increasing coordina-
tion number are important) and final stage densifica-
tion (q > 90 pct, considering the shrinkage of
individual pores in a matrix) are respectively given as
follows:
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where q0 is the initial powder density and the con-
stants Bi and Bf take into account compaction geome-
try (Bi = 1.1 and Bf = 1.8 for uniaxial die
pressing[15]).When thermally cycled between its allo-
tropic a- and b- phases, Ti-6Al-4V exhibits transforma-
tion mismatch plasticity[11,12,17–20] with a constitutive
equation given by

_ex ¼
4

3
� 5 � n
4 � nþ 1

� DV
V
� 1
Dt
� rx

r0
½4�

where _ex is the average uniaxial strain rate during
thermal-cycling transformation-mismatch plasticity;
DV/V (=0.96 pct) is the volume mismatch between the
allotropic a and b phases[11]; Dt is the period of the
thermal cycles spanning two transformations on heating
and cooling, respectively; and r0 is the average internal
stress generated during the phase transformation
(r0 = 7.4 MPa for Ti-6Al-4V[11]). Transformation mis-
match plasticity (Eq. [4]) is a special case of a creep-type
equation (Eq. [1]) with creep stress exponent n = 1 and
the other parameters in Eq. [4] merged as a constant C,
with a value of 1.045 9 10�5 MPa�1s�1[11,16] for Ti-6Al-
4V for thermal cycling 1133 K to 1293 K (860 �C to
1020 �C) with a period Dt = 191 seconds (with a
heating time of 96 seconds and cooling time of 95 sec-
onds under constant heating powder during the thermal
cycling experiment). The preceding creep-based powder
densification models (Eqs. [2] and [3]) can then be
applied to the case where transformation mismatch
plasticity is active, as shown for densification of com-
mercial purity titanium (CP-Ti)[15] and Ti-6Al-4V.[16]

An alternative modeling approach for modeling
powder densification is based on the finite-element
(FE) method. For powder densification modeling, some
researchers have focused on developing macroscopic
constitutive law[21–30] without addressing explicitly the
stress state within individual powders to minimize
computation expenses. In this context, a discrete
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element method (DEM)[31] with a simplified interparticle
contact model and explicit integration, has been devel-
oped to simulate macroscopic granular compactions,
with thousands of powder particles. Because of limita-
tion in the contact model, this approach is limited to the
simulation of low relative densities processes such as
cold compaction.[32] With the growth of computational
power and the desire to understand large particle
permanent deformation and complex powder interac-
tion during high-density powder compaction, powder-
level (with multiple powder particles) FE simulations are
becoming feasible and have been performed in two-
dimensional[33,34] and three-dimensional (3-D)[35,36] for
the case of cold compaction. The main difficulty is from
the complexity of interpowder contact simulation.
Furthermore, other approaches such as multi-scale
framework,[37] combination of DEM and FE meth-
ods[38–41] with effective contact detection algorithm,[42]

and statistical modeling[43] based on fine features from
powder-level FE results[33,38] are being actively devel-
oped. However, all the powder-level simulations con-
ducted to date are confined to the elastic-plastic case
during cold compaction, and we are not aware of
simulations for the more complex case of power-law
based creep densification at high temperature, relevant
to hot pressing.

In the current article, we examine the densification of
Ti-6Al-4V powders in a powder-level FE simulation,
where powders deform by isothermal, creep conditions
or under thermal cycling, transformation-mismatch
plasticity conditions. We compute densification curves
for various applied stresses for hot die pressing and
compare these results to previous experimental data and
predictions from continuum models (Eqs. [2] and
[3]).[8,15] We also examine the effects of powder shape

and initial packing geometry on the stress distribution in
the powders during densification and the resulting
densification kinetics.

II. FINITE-ELEMENT MODEL

A. Simulation Approach

The FE simulation is complicated by the contacts
between particles (necessitating contact penetration
detection) and by the large strains accumulated. The
computation was conducted on an eight CPU desktop
computer using the parallel function of the commercial
software suite ABAQUS/Standard 6.7-3 software of
Dassault Systèmes (Lowell, MA) (improving accuracy
as compared with ABAQUS/Explicit). During the
simulation, the powders were in point contact in the
initial configuration, corresponding to the configuration
present after manually tapping the powders in a physical
experiment. In such powder compaction experiments,

Fig. 1—FE densification simulation for simple cubic configuration
(sc): (a) initial powder with 53 pct relative density and (b–d) von
Mises stress contour plot of deformed powder at different time for
Ti-6Al-4V at 15 MPa applied stress and 1293 K (1020 �C). The gray
region represents stress greater than the maximum value in the color
scale. Densification times and relative density are given under each
figure.

Fig. 2—FE densification curves for sc configuration for Ti-6Al-4V
powders under 10 MPa stress deforming by (a) creep at 1293 K
(1020 �C) and (b) transformation-plasticity 1133 K to 1293 K
(860 �C to 1020 �C). Letters refer to model (P: plasticity, C: creep)
and numbers to the number of elements.
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the external stress is first gradually applied to the desired
level and then kept constant until the end of the
compaction. To translate the experiment to simulation
and for better numerical stability, the simulation was
divided into two stages: (1) the stress is ramped linearly
over one second from zero to the final stress level and (2)
the stress is maintained constant while densification
takes place. Special care was used for modeling contact
between powders. Initially, the tolerance for adjustment
zone is zero for the contact adjustment between the slave
node and surface. In stage (1) of the simulation, the
contact was assured by an interference fit option named
‘‘gradually remove slave node over-closure by automatic
shrink fit’’ in ABAQUS/Standard. In stage (2), the
uniform allowable interference is by amplitude with a
typical initial value of 0.0001 in ABAQUS/Standard,
which is equivalent to 0.0001 lm for the real powders.

Because the densification is by creep deformation of
the powders (Eq. [1]), the first intuitive choice for the
ABAQUS simulation procedure is isotropic creep (using
von Mises stress potential) under the ‘‘visco’’ procedure,
where time can be tracked. In this procedure, creep
integration is by a mixed explicit and implicit scheme for
both accuracy and speed. The error was controlled by
creep strain error tolerance parameter (CTEOL) (De),

the ratio of force measurement error (Dr) to the
Young’s modulus E, and a value of 2.3 9 10�6 was
taken so that the force measurement error was about
0.1 MPa, or 1 pct for 10 MPa loading. The time-
hardening (constant stress condition) and strain-hard-
ening (stress varying condition) creep law in ABAQUS
was limited in the applications where the stresses were
relatively low. However, the contact front between
powders had a high effective stress, so large permanent
plastic deformation occurred there. With the specified
error level by CTEOL, the simulation with creep by the
‘‘visco’’ procedure was rather slow for a single powder
simulation. In the case of multiple powder simulation,
e.g., face-centered cubic (fcc) configuration (as described
in more details below), solution convergence was diffi-
cult without using a damping factor. With a damping
factor, an unreasonable stable condition was often
reached, which was indicated by the ratio of the viscous
damping energy (called ALLSD in ABAQUS) or
dissipated stabilization energy to the total strain energy
(called ALLSE in ABAQUS) exceeding a reasonable
fraction, which was below 5 pct for powder compaction
without much rigid motion (as per ABAQUS Analysis
User’s Manual, Section 7.1.1). The problem of the
damping effect was also indicated by the fast relaxation
of von Mises stress, which led to a negligible strain rate
(Eq. [1]) or densification rate. Fine tuning (including
parameter study and parameter optimization for both
accuracy and speed) was needed to use the creep
procedure.
To improve computational efficiency, the creep sim-

ulations were carried out in ABAQUS with rate-
dependent plasticity; Eq. [1] was rewritten as follows:

rx ¼ _ex=Cð Þ1=n ½5�

Fig. 3—FE densification simulation for simple cubic configuration
with two different powder sizes (sc-2): (a) initial powder with relative
density 60 pct, and (b-f) von Mises stress contour plot of deformed
powder at different time for Ti-6Al-4V at 15 MPa applied stress and
1293 K (1020 �C). The gray region represents stress greater than
maximum stress in the color scale. The densification times and rela-
tive density are given under each figure.

Fig. 4—FE densification simulation for bcc configuration: (a) initial
powders with relative density 68 pct, and (b–d) von Mises stress con-
tour plot of deformed powders at different time for Ti-6Al-4V at
15 MPa applied stress and 1293 K (1020 �C). The gray region repre-
sents stress greater than maximum stress in the color scale. The den-
sification times and relative density are given under each figure.
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The stress/strain-rate relation was provided as tabulated
data based on the creep equation (Eq. [1]). Conceptu-
ally, because the yield stress is close to zero in the rate-
dependent, perfectly-plastic material, at any applied
stress, plastic strain develops continuously as long as the
strain rate is within the range of validity of the creep
equation (Eq. [1]) or equivalently the rate-dependent
plasticity equation (Eq. [5]). However, if there is a slight
increase in strain rate, the yield stress increases so that it
is larger than the applied stress, i.e., the material does
not yield any more and the plastic deformation stops
until the rate decreases so that the material is in a yield
condition again. Also in Eq. [5], there is no work
hardening component, and previous strain history has
no influence on strain rate under a specific stress. In this
manner, the creep equation is always satisfied. This
approach to powder compaction simulation by rate-
dependent plasticity increased the computational speed
significantly and allowed the implementation of more
complex material behavior including both creep and
rate-dependent plastic deformation.

B. Simple Cubic Array of Powders

A simple cubic (sc) infinite array of spherical powders
is simulated by 1/8 of a single spherical powder, using

symmetry considerations with appropriate periodic
boundary conditions. This was achieved by confining
the powder in a virtual box, cubic in shape at the onset
of the simulation, so that contact between powders was
enforced. The box with two square pistons located at the
top and bottom was modeled as a 3D discrete rigid
object, and the powder was modeled as a 3D deformable
object. Constant pressure was applied on the upper
piston, which was allowed to translate in the z direction
only, whereas the lower piston and the sides of the box
were fixed so that the powder deformed along the z
direction (Figure 1(a)) with no preferred deformation in
the deformation taking place in the horizontal directions
(x-y plane). Figure 1 shows von Mises stress contours in
the powder deformed to three levels corresponding to
70 pct, 80 pct, and 99 pct relative densities (calculated
as ratio of powder to box volume).
The creep- and rate-dependent plasticity approaches

were implemented in the material properties module of
ABAQUS. Densification curves calculated for creep
under isothermal condition are shown in Figure 2(a):
Negligible differences were found between these two
implementations and the simulations with different mesh

Fig. 5—FE densification simulation for fcc configuration: (a) initial
powders with relative density 74 pct and (b–f) von Mises stress con-
tour plot of deformed powders at different time for Ti-6Al-4V at
15 MPa applied stress and 1293 K (1020 �C). The gray region repre-
sents stress greater than maximum stress in the color scale. The den-
sification times and relative density are given under each figure.

Fig. 6—FE densification curves (sc configuration) for CP-Ti powders
at various stresses for (a) isothermal creep at 1143 K (870 �C) and
(b) transformation mismatch plasticity during thermal cycling
1133 K to 1253 K (860 �C to 980 �C).
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density under the rate-dependent plasticity approach
converged. Similar results are achieved for densification
curves for transformation-plasticity under thermal
cycling conditions (Figure 2(b)). Given that there was
no distinction between these two approaches, the densi-
fication simulations discussed in the following sections
were based mostly on the rate-dependent plasticity
approach (Eq. [5]) to increase computational speed.

C. Centered Cubic Arrays of Powders

Increased complexity is captured in a simple cubic
configuration with two different powder sizes (sc-2) as
well as in body-centered cubic (bcc) and fcc arrays of
single-size powders, with symmetry allowing the use of
two and four eighths of spheres, as illustrated in
Figures 3 through 5. It is technically important to
consider consolidation with mixed particle sizes (sc-2 in
this study) and different shapes to capture finer features
during consolidation (such as higher stress on smaller

powder) as recognized in the continuum modeling in the
literature.[44,45] In this study, to account for the different
powder size for better initial relative density (60 pct),
powders with two sizes (with a radius ratio of 1.566:1)
and equal number were packed in simple cubic config-
uration (or alternating along all three directions) as
shown in Figure 3. In contrast with the condition of no
sliding among powders used in the single-powder sc
configuration, interpowder sliding in the sc-2, and the
bcc and fcc configurations is allowed to reflect the
nature of multipowder deformation during densifica-
tion. As a result, the number of intercontact regions
increases, and so does the computational expense.
Because ABAQUS has the capability to track self-
contact with possible separation and sliding, the spher-
ical powders were grouped or merged into one part in
ABAQUS to use the self-contact function, although the
grouped powders were not in contact in the initial state.
In this manner, only the contacts and possible contacts
(defined as intercontact in ABAQUS) between powders

Fig. 7—Densification curves for CP-Ti showing experimental data (from Ref. 10 for a-Ti and from Ref. 15 for b-Ti), and current FE model pre-
dictions (sc configuration with stress knock-down factors f) for isothermal conditions (a) a-Ti at 25 MPa and 1003 K, 1073 K, and 1143 K
(730 �C, 800 �C, and 870 �C) (f = 0.17), (b) a-Ti at 50 MPa and 1003 K, 1073 K, and 1143 K (730 �C, 800 �C, and 870 �C) (f = 0.17), (c) a-Ti
at 1143 K (870 �C) and 25, 34, 50 MPa (f = 0.17), and (d) b-Ti at 1253 K (980 �C) and 1 MPa (f = 1) and 3 MPa (f = 0.6).
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and the cubic box, and the base and top piston needed
to be specified. Although the intercontact can be
automatically searched and established by ABAQUS
based on interseparation criteria, the intercontacts were
specified individually because the number of intercon-
tacts was still manageable even in the case of bcc and fcc
configurations. During the compaction of monosized
powders, all the powders deformed equally as shown in
Figures 4 and 5. In contrast, for powders with bimodal
size distribution, smaller powders are deformed more
heavily than the larger powders, as shown in Figure 3
and as reported by Li and Funkenbusch.[45,46]

III. RESULTS AND DISCUSSION

A. Densification of CP-Ti Powders

The effect of applied stress on densification of CP-Ti
powders is shown for the sc configuration in Figure 6(a)
for isothermal creep and in Figure 6(b) for transforma-
tion-plasticity caused by thermal cycling. As expected
from the respective stress exponents, the effect of stress
was more pronounced in the former case than in the
latter. Another notable difference between the two cases
is the densification behavior for long times (>10,000 sec-
onds): Under creep conditions, a near horizontal plateau
is reached (Figure 6(a)), whereas under superplastic
conditions, the curve retains a positive slope indicating
that full density is achievable in a shorter time (Fig-
ure 6(b)).

Two previous studies on CP-Ti powder hot pressing
were carried out at temperatures where titanium is in its
a-phase [1003 K, 1073 K, and 1143 K (730 �C, 800 �C,
and 870 �C)][10,15] or its b-phase 1253 K (980 �C).[10,15]
The experimental densification curve measurements
were compared with models based on dislocation creep
mechanism (Eq. [2]). For isothermal conditions, CP-Ti
followed a power-law creep (Eq. [1]) with creep stress
exponent n = 4.3 and power law creep constant C. For
the a-phase CP-Ti, C takes values of 1.29 9 10�10,
7.72 9 10�10, and 3.86 9 10�9 MPa�4.3s�1 at 730,
1073 K, and 1143 K (800 �C and 870 �C), respec-
tively.[10,47] For b-phase CP-Ti at 1253 K (980 �C), C
is 6.74 9 10�6 MPa�4.3s�1.[48] Modeling of powder
densification with Eq. [2] assumed ideal condition
without friction; however, the friction was high in these
experiments[10] because of the absence of lubricant
coating between the CP-Ti preform and the molybde-
num die wall. We introduce a ‘‘knock-down factor’’ f to
account for the friction effect on the effective applied
stress in Eqs. [2] and [3] by multiplying the effective
stress with f. For a-Ti powder densification,[10] a single
knock-down factor f = 0.17 resulted in reasonable
agreement between the measured and calculated densi-
fication curves for the three applied stresses (25, 34, and
50 MPa) and three temperatures [1003 K, 1073 K, and
1143 K (730 �C, 800 �C, and 870 �C)], as shown in
Figures 7(a) through (c). Calculated and measured
densification curves for b-Ti at 1253 K (980 �C) are
shown in Figure 7(d). To achieve reasonable agreement
with the experimental curves,[15] the knock-down factors

for the applied stresses of 1 and 3 MPa are unity
(indicating no friction) and 0.6, respectively. The
reduced level of correction caused by friction (knock-
down factor closer to unity) may be due to the result of
much lower applied stresses (1–3 vs 25–50 MPa) and the
larger die area (10.4 vs 1.2 cm2).

B. Densification of Ti-6Al-4V Powders

The densification curves calculated for Ti-6Al-4V
powders are shown for isothermal conditions [1293 K
(1020 �C)] in Figure 8(a) and for thermal cycling con-
ditions [1133 K to 1293 K (860 �C to 1020 �C)] in
Figure 8(b) for the sc configuration. The same trends
found for CP-Ti (Figures 6(a) and (b)) are apparent,
illustrating that transformation mismatch plasticity,
despite the lower average temperature, significantly
enhances densification rates for low applied stress
(e.g., 5 MPa) and when relative density is high, i.e.,
when interparticles stresses are relatively low.
Figures 9(a) through (d) show, for isothermal densi-

fication under applied stresses of 5, 10, 15, and 20 MPa,
a comparison between FE modeling, continuum mod-

Fig. 8—Stress effect on Ti-6Al-4V densification simulation of single
powder in sc configuration based on (a) creep and (b) transforma-
tion mismatch plasticity.
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eling, and experiments for rounded plasma rotating
electrode process (PREP) powders.[16] Reasons for the
discrepancy between the continuum model and the FE
calculations include the different particle packing and
the transition from initial to final stage. A discrepancy
with experimental data may be caused by friction effects,
as discussed previously (no knock-down factor was used
in Figures 9(a) through (d)). A similar comparison is
given, for applied stresses of 5, 10, and 15 MPa, in
Figures 10(a) through (c) for the case of densification
under thermal cycling conditions when transformation-
mismatch plasticity is active. The agreement is, in most
cases, adequate among the continuum model, the
experimental measurements, and the FE simulation
with various powder configurations (and no knock-
down factor). The sc configuration with two different
powder sizes, with an initial relative density close to
60 pct, gives the best match with the experimental
measurement (Figure 10) for hydrogenation/dehydro-
genation (HDH) and PREP powders. Another obser-
vation is that the sc configuration takes longer to reach a
given density compared with the bcc and fcc configura-
tions, in part because of the lower initial density.

However, in the case of dislocation creep densification
under isothermal condition, sc packing (Figures 9(a)
through (d)) has a better agreement with experimental
data; under thermal cycling conditions (Figures 10(a)
through (c)), bcc and fcc configurations give a better
match. Initial bcc and fcc configurations are closer to
the configuration assumed in the continuum model
(powder coordination number of 7.7) with initial relative
density close to the bcc configuration (powder coordi-
nation number of 8). As expected, the FE results with
sliding are in better agreement with the continuum
models for these more realistic powder packings (two-
powder sc, bcc, and fcc) and in reasonable agreement
with experimental measurements, given the simplifica-
tions used in the model. The difference in densification
kinetics between bcc and fcc is small, and it may be
caused by different initial density and different slipping
contributions. More complex models capturing particle
size distribution, random particle packing, and more
accurate powder sliding will be needed to improve
agreement with experiments.
The effect of powder shape is illustrated in Figure 11,

which shows FE densification curves (for the sc

Fig. 9—Densification curves for Ti-6Al-4V showing experimental data (Exp label) and continuum model (Model) predictions (both from Ref.
16), and current FE mode (FE) predictions (sc configuration with no stress knock-down factors) for isothermal conditions at 1293 K (1020 �C)
for applied stresses of (a) 5 MPa, (b) 10 MPa, (c) 15 MPa, and (d) 20 MPa.
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configuration under isothermal conditions and 15 MPa)
for powders with the following aspect ratio c/a (where a
and c are the powder axes perpendicular and parallel to

the applied stress, respectively): c/a = 1.2 (prolate spher-
oids), c/a = 1 (spheres), and c/a = 1/1.2 = 0.8 (oblate
spheroids). The densification kinetics are nearly identi-
cal for c/a = 1.2 and 1 but clearly slower for c/a = 0.8.
A likely reason is that the latter configuration requires
the largest powder strain (which is predominantly
uniaxial compressive, in the direction of the applied
stress) to fill the gap between the powders for full
densification.
Double-logarithmic plots of densification rate vs

relative density are shown in Figure 12(a) for various
applied stresses. The rates were calculated by taking
every five density points in the FE simulations for sc
configuration under isothermal condition. It is apparent
that these plots are linear over most of the density range,
i.e., from ~60 pct to ~90 pct (the onset of final stage
densification), with the same slope for the various
applied stresses between 5 and 40 MPa, where the initial
stage densification (up to 90 pct relative density) is
relatively short. According to the continuum model
(Eqs. [4] and [5]), at a specific relative density, the
densification rate is proportional to rn, the applied stress
raised to the power exponent n. Then, normalizing the
densification rate by rn should produce a unified master

Fig. 10—Densification curves for Ti-6Al-4V showing experimental data (HDH and PREP) and continuum model (Model) predictions (both from
Reference 16) and current FE model predictions (sc, sc(2), fcc, and bcc configurations with no stress knock-down factors) for thermal cycling
conditions [1133 K to 1293 K (860 �C to 1020 �C)] and applied stresses of (a) 5 MPa, (b) 10 MPa, and (c) 15 MPa.

Fig. 11—FE densification curves for sc configuration of Ti-6Al-4V
powders at 1293 K (1020 �C) for different aspect ratios of powders
with applied stress of 15 MPa (loading direction is along c axis) with
aspect ratio c/a = 1.2, 1, and 1/1.2 = 0.8.
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curve for all applied stresses. Using the FE data
presented in Figure 12(a), this prediction from the
continuum model is tested in Figure 12(b). The curves
converge for applied stress values spanning 5–40 MPa,
indicating a good match between continuum and
numerical models, and indicating that the simple con-
tinuum model for densification is a good approximation
and that only small improvements in predicted densifi-
cation kinetics can be expected from the much more
complex and time-consuming FE model. This model,
however, provides interesting insights on the stress
distribution within the powders, which is an effect of
initial packing and powder shape.

IV. CONCLUSIONS

FE modeling was conducted to describe CP-Ti or
Ti-6Al-4V powder densification for uniaxial die pressing
at an increased temperature under isothermal conditions
(where power-law creep controls powder deformation)

or under thermal cycling conditions (where transformation-
mismatch plasticity is controlling). The following main
conclusions are reached:

1. For isothermal densification in the a- or b-fields of
CP-Ti, reasonable agreement is found between the
FE models and experimental measurement in the
literature.

2. For isothermal densification at 1293 K (1020 �C) of
b-Ti-6Al-4V, predictions from FE simulation and
continuum modeling are in general agreement with
literature experimental densification measurement
under different applied stress.

3. For thermal cycling densification of Ti-6Al-4V via
transformation superplasticity over the a-b-field, FE
simulations with bcc and fcc powder configurations
show a better match than sc configuration com-
pared with the literature experimental measurement.

4. The good agreement between the complex FE model
and the simpler continuum model indicates that for
both thermal cycling and isothermal conditions, the
latter model can be used with reasonable accuracy.
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