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Abstract

An ultrahigh-carbon steel was heat-treated to form an in situ composite consisting of a fine-grained ferritic matrix with 34 vol.% sub-
micron spheroidized cementite particles. Volume-averaged lattice elastic strains for various crystallographic planes of the a-Fe and Fe3C
phases were measured by synchrotron X-ray diffraction for a range of uniaxial tensile stresses up to 1 GPa. In the elastic range of steel
deformation, no load transfer occurs between matrix and particles because both phases have nearly equivalent elastic properties. In the
steel plastic range after Lüders band propagation, marked load transfer takes place from the ductile a-Fe matrix to the elastic Fe3C par-
ticles. Reasonable agreement is achieved between phase lattice strains as experimentally measured and as computed using finite-element
modeling.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Although steels with high and ultrahigh-carbon content
have been produced for many centuries (e.g. Wootz and
Damascus steel), their microstructure and mechanical
properties have only recently begun to be studied with
modern scientific methods [1–7]. These steels have a
remarkable combination of mechanical properties, e.g.
very high hardness, strength and wear resistance, good duc-
tility, and superplasticity at elevated temperature [1–7].
Ultrahigh-carbon steel (UHCS) is an in situ composite with
a high volume fraction of strong, brittle, ceramic particles
(Fe3C, cementite) precipitated by heat treatment within a
soft, ductile matrix (a-Fe, ferrite). The UHCS carbon con-
tent is in the range 1.0–2.1 wt.% (4.5–9.1 at.%) [4], corre-
sponding to a cementite volume fraction of 15–32% (as
determined from the binary Fe–C diagram). Such high vol-
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ume fractions of ceramic reinforcement are typical of metal
matrix composites (MMCs) produced by ex situ methods
[8]. Much research has been devoted to measuring the load
partitioning between matrix and reinforcement in MMCs
by neutron [9–19] and synchrotron X-ray [20–28] diffrac-
tion, and modeling the load transfer based on matrix/
reinforcement elastic mismatch, matrix plasticity, interface
damage and reinforcement fracture [9–13,15–17,19–22,
24–26,28].

Similar to these ex situ MMCs, the load partitioning
between the a-Fe and Fe3C phases in UHCS has also been
studied by diffraction. Using X-ray diffraction, lattice
strains for these two phases in spheroidized UHCS
(1.1 wt.% C) were first measured by Wilson et al. [29,30]
upon mechanical loading and unloading. X-ray microbeam
diffraction using laboratory-source X-rays was also used to
study the effect of residual stresses in a-Fe and Fe3C phases
in high-carbon steel (0.54–0.8 wt.% C) [31]. However, these
results apply only to the near-surface volume due to the
low penetration depth of laboratory-source X-rays in iron.
rights reserved.
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Table 1
Composition and estimated Fe3C volume fraction for high- and ultrahigh-carbon steels used in previous and present diffraction studies of load transfer

Alloying elements (wt.%) Fe3C (vol.%) Diffraction method

C Si Mn Cr Al

0.35–0.40 0.20–0.65 1.30–1.60 0.15 0.03 8 Neutron [32]
0.82 0.23 0.73 – – 16 Neutron [33]
0.88 0.16 0.51 – – 17 Neutron [34]
1.0 0.3 0.35 0.4 – 19 Neutron [35]
1.8 – 0.5 1.5 1.6 34 Synchrotron X-rays (present work)
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Neutron diffraction, which allows for much higher penetra-
tion depths in high-atomic-weight elements such as iron,
was recently used to study load transfer between the a-Fe
and Fe3C phases during tensile deformation of high- and
ultrahigh-carbon steel samples with 0.35–1 wt.% C
[32–35], as summarized in Table 1.

The goal of the present study is to use, for the first time,
synchrotron X-ray diffraction to measure bulk phase
strains during deformation of a UHCS with very high car-
bon content (1.8 wt.% C), as a function of applied stress,
crystallographic orientation and rolling direction. Mea-
surements of the load transfer between a-Fe and Fe3C
are compared to predictions from a finite-element model
and discussed in light of earlier neutron diffraction work
[32–35] on steels with lower Fe3C volume fractions
(Table 1).

2. Experimental procedures

2.1. Materials processing

A UHCS with 1.8 wt.% C (see Table 1 for the full com-
position) was procured from the same stock as the material
studied by Taleff et al. [4]. The steel had been heat-treated
according to the following schedule: (i) soaking at 1093 �C
for 8 h (in the c-Fe field); (ii) hot-rolling in several steps
from 1093 to 900 �C (c field to cþ Fe3C field); (iii) hot-
shearing into segments; (iv) soaking at 1093 �C for 48 h
(in the c field); and (v) furnace-cooling. In a final step,
the ingot had been reheated to 810 �C (cþ Fe3C field)
and warm-rolled continuously to a temperature of about
750 �C (cþ Fe3 field). The heat-treated and rolled plate
was then machined into a tensile sample (shown in
Fig. 1. Schematic of experimental diffraction setup, showing photograph of
(ND, out of the page) directions indicated.
Fig. 1) with a 1:3� 1:3 mm2 gage section and a 15.6 mm
gage length, subsequently soaked at 200 �C for 1 h, and
finally heat-treated at 950 �C (cþ Fe3 field) for 20 min in
a high-vacuum furnace prior to tensile testing. Here, the
final 950 �C heat-treatment was slightly higher than in
Ref. [4] where the final heat treatment was performed at
840 or 870 �C. As shown in Table 1, the Fe3C volume frac-
tion of 34% studied here is almost twice that of the previ-
ous neutron experiments. This volume fraction was found
by linear extrapolation of those reported in Refs. [32,35]
with similar levels of non-C alloying additions, and is
higher than the volume fraction calculated by the lever rule
(27%) assuming a binary Fe–1.8 wt.% C composition.

2.2. Diffraction measurements

High-energy X-ray diffraction measurements were car-
ried out at the 1-ID beamline of the Advanced Photon
Source (Argonne National Laboratory, IL). In situ uniax-
ial tensile testing was performed using a custom-built,
screw-driven loading system operated in displacement con-
trol. The average sample macroscopic stress and strain
were recorded with a load cell and a strain gage attached
to the sample, respectively. The general setup for these
experiments is shown in Fig. 1 and is similar to that used
in Refs. [24,25,36–40]. The sample was subjected to increas-
ing uniaxial tensile stresses up to failure, with the stress
parallel to the rolling direction. The macroscopic stress
and strain were recorded at every 10 lm cross-head dis-
placement increment. At every 50 lm increment, diffraction
measurements were performed with a monochromatic
81 keV (k = 0.015 nm) X-ray beam for 90 s (this is a much
shorter exposure time than with current neutron sources,
a UHCS tensile sample with rolling (RD), transverse (TD) and normal
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thus ensuring that sample creep during the experiment was
negligible). The incident X-ray beam, with a square
50 · 50 lm2 cross-section, was positioned in the center of
the specimen cross-section and was parallel to either the
normal direction (ND) or the transverse direction (TD)
with respect to the rolling plane, dependent on the orienta-
tion of the sample. Complete Debye–Scherrer diffraction
rings from the a-Fe matrix and the Fe3C reinforcement
present in the diffraction volume were recorded using an
image plate (Mar345) with 345 mm diameter, operating
in full mode and providing a pixel size of 100 lm with
16 bit dynamic range. An ion chamber and a PIN diode
(p-type, intrinsic, n-type diode) embedded within the beam
stop were used to measure the initial and transmitted beam
intensity, respectively, thus facilitating sample positioning
with respect to the beam. The sample-to-camera distance
was 1.036 m. In addition, calibration diffraction cones were
produced from a paste composed of vacuum grease and
pure ceria powder (CeO2, NIST Standard Reference Mate-
rial SRM-674a), which was smoothly applied to the surface
of the sample (Fig. 1).

2.3. Diffraction analysis

A typical diffraction pattern is shown in Fig. 2. As evi-
denced by the high uniformity of the diffraction ring inten-
sities, the Fe3C particles and the a-Fe grains are
significantly smaller than the 50 · 50 · 1300 lm3 diffracting
volume. To determine the lattice strains from measured dif-
fraction rings, an algorithm similar to those from Refs.
[25,41,42] was used, which takes into account the whole dif-
fraction rings. This algorithm is implemented using the
program language MATLAB [43], and consists of the fol-
lowing steps:
Fig. 2. Representative X-ray diffraction pattern (quarter of image plate)
of the UHCS sample. All of the diffraction rings were identified. For
clarity, only some of the rings belonging to CeO2, a-Fe, and Fe3C phases
are indicated here. Darker pixels indicate higher diffracted intensity.
1. The beam center, detector tilt and sample-to-detector
distance (‘calibration parameters’) are determined with
the software FIT2D [44,45], using CeO2 (200) reflec-
tions near the center and CeO2 (333) reflections near
the outer edge of the detector.

2. The diffraction pattern is converted from polar to Carte-
sian coordinates in N radial · M azimuthal bins (typi-
cally with values of N = 800, corresponding to
2.2 pixels, and M = 144, corresponding to an angle
increment of 2.5�), using the calibration parameters to
correct for beam center, detector tilt and sample-to-
detector distance.

3. For selected crystallographic reflections, the profile of
the peak intensity as a function of radial distance is fit-
ted using a pseudo-Voigt function to find the average
center of the peak intensity R. This is done for all M azi-
muthal bins (i.e. in angle increments of g = 2.5�).

4. The R(g) values are converted to absolute d-spacings
d(g) using the above calibration parameters, in addition
to the known X-ray wavelength.

5. Plots of R vs. sin2(w) are created for all applied stress,
where w ¼ gþ h cosðgÞ (with h as the Bragg angle and
0 < g < p=2 and similar relationships given in Ref. [41]
for p=2 < g < 2p). The resulting lines intersect at an
invariant ‘‘strain-free’’ value R0 and invariant azimuthal
angle g0.

6. The X-ray lattice strain for a given (hkl) reflection is cal-
culated using:

eðgÞ ¼ ðR0 � RðgÞÞ
R0

ð1Þ

and these values are then used to determine the two axial
strain components in the sample coordinate system
ðe11 ¼ eð90�Þ and e22 ¼ eð0�ÞÞ using equations derived
by He and Smith [46] for two-dimensional detectors.
3. Results

3.1. Steel microstructure and stress–strain curve

Optical micrographs of the sample etched with 2% Nital
revealed a fine-grained a-Fe matrix with a high volume
fraction of fine, spheroidized Fe3C particles, as depicted
in Fig. 3a. Also present as a minority phase was proeutec-
toid Fe3C oriented in large striations exceeding 1 mm in
length. Scanning electron microscopy of the etched sample
was used to resolve the fine, micrometer-size Fe3C spher-
oids embedded within the a-Fe matrix (Fig. 3b). While
image analysis had too much error to provide useful
results, Fig. 3b shows that the calculated Fe3C volume frac-
tion of 34% is realistic.

Before loading the sample, synchrotron X-ray diffrac-
tion measurements were taken from / ¼ 0� (ND) to 90�
(TD), Fig. 1, in 5� increments, and pole figures were created
to determine the initial texture, as shown in Fig. 4a and b.
These pole figures show that the a-Fe (200) reflections are



Fig. 3. (a) Optical micrograph of the UHCS sample etched with 2% Nital
showing a region of a-Fe matrix and Fe3C spheroids (A/B) and large
striations of proeutectoid Fe3C (C). (b) Scanning electron micrograph in
secondary electron mode of a UHCS sample etched with 2% Nital with
a-Fe matrix (A) and Fe3C spheroids (B) indicated.
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preferentially oriented in the rolling direction, while the
a-Fe (211) reflections are preferentially oriented at an
intermediate angle between the rolling and transverse direc-
tions, which is in general agreement with results from
Fig. 4. Pole figures with no applied stress for the (a) (200) a
previous studies on low-carbon and duplex steels [47–49].
The texture due to rolling was weak, as the maximum mul-
tiple random distribution (MRD) values of 1.5 and 1.2 for
the a-Fe (200) and (211) reflections, respectively, are close
to unity (corresponding to a perfectly isotropic material).

The macroscopic stress–strain curve for the UHCS sam-
ple is shown in Fig. 5. Upon initial loading, elastic behavior
with a Young’s modulus of 204 GPa was exhibited up to a
stress of 720 MPa, where yielding occurred by Lüders band
nucleation and propagation over a macroscopic sample
strain of 0.7%. This was followed by plastic deformation
with strain hardening up to failure at a stress of
1060 MPa and an engineering strain of 6.1%.

3.2. Phase lattice strain evolution

The lattice parameter value for pure body-centered
cubic a-Fe (pdf # 06-0696) is a ¼ 2:866 Å [50], which is
slightly smaller (by �0.2%) than the iterative value of
2.871 Å determined for the a-Fe in this study. The lattice
parameter values for orthorhombic Fe3C (pdf # 85–0871)
are a = 4.51, b =5.04, and c ¼ 6:73 Å [51], which are also
slightly smaller than, but within error of, the iterative val-
ues of 4.515, 5.08, and 6.77 Å, respectively, determined for
the Fe3C in this study. Such differences in absolute lattice
parameters are often found due to minor alloying varia-
tions, but do not have an impact on the strains measured,
which are based on relative variation in lattice parameter.

As illustrated in Fig. 6a and b, the lattice strain vs. sin2 w
plots for the Fe (220) reflection were linear in the steel elas-
tic range and nonlinear in the plastic range. For the Fe3C
(22 0) reflection, these plots were linear throughout the
whole loading range, as shown in Fig. 6c where, for clarity,
only one out of every three curves is plotted. The ‘‘strain-
free’’ lattice spacing for the a-Fe (220) and Fe3C (220)
reflections are d0 ¼ 1:0160 Å and 0.3534 Å, respectively,
as illustrated in Fig. 6a and c.

Fig. 7 shows plots of applied stress vs. lattice strain (e11

and e22 in directions axial and transverse to loading,
respectively), as calculated from diffraction measurements
for the a-Fe (220) and Fe3C (22 0) reflections. At zero
nd (b) (211) a-Fe reflections. Scale shows MRD values.



Fig. 5. Macroscopic stress–strain curve for UHCS tensile sample showing
experimental data (open squares), a-Fe and Fe3C reinforcement elastic
input curve (dashed line), a-Fe matrix plastic input curve (dotted line), and
steel curve calculated from finite-element model (solid line). The model
does not capture the Lüders band propagation between the elastic and
plastic ranges.

Fig. 6. Lattice strain/lattice spacing vs. sin2 w distributions for (a) the
a-Fe matrix in the elastic steel range; (b) the a-Fe matrix in the plastic steel
region, and (c) the Fe3C particles in the elastic and plastic steel ranges. Each
line represents a single diffraction ring from the Fe (220) and Fe3C (220)
reflections, respectively, at a unique stress. For the Fe3C (220) reflection,
only one out of every three diffraction rings is shown. No applied stress
(0 MPa), the onset and end of the Lüders band (�720 MPa), and the
highest stress before failure (1060 MPa) are indicated in the figures.
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applied stress, residual strains are near zero. In the steel
elastic range, the slopes for the a-Fe matrix (209 GPa)
and the Fe3C reinforcement (229 GPa) in the axial direc-
tion are, within experimental error, equal to each other
and to the macroscopic Young’s modulus for the steel
(204 GPa). Similarly, the slopes for the a-Fe matrix
ð�739 GPaÞ and the Fe3C reinforcement ð�689 GPaÞ in
the transverse direction to loading (e22) are equal within
experimental error (these slopes are negative due to the
compressive nature of transverse strains). The absolute
value of the ratio of these slopes gives Poisson’s ratios of
m ¼ 0:28 and 0.33 for a-Fe and Fe3C, respectively, in good
agreement with the literature values of 0.29 for both phases
[52,53]. While the lattice strains are the same for both
phases in the elastic range of the steel deformation, they
are vastly different in the plastic range: immediately after
yield by Lüders band propagation, the matrix lattice strains
(both axial and transverse) drop well below the maximum
value observed in the elastic range, while the Fe3C strains
rise well above their elastic value. The Fe3C reinforcement
displays an axial strain higher by a factor of 2.4 (at the
beginning of the plastic range) to 3.6 (at fracture), as com-
pared to the Fe matrix (Fig. 7). Such load shedding from
matrix to reinforcement is characteristic of MMCs display-
ing elastic reinforcement in a plastic matrix [9–28,54–56].

The strain evolution of both phases, using the a-Fe (220)
and Fe3C (220) reflections, is shown in Fig. 8a and b for
two orthogonal directions relative to the rolling direction.
For the Fe3C reinforcement, a small amount of residual
strain (250 le) is present before loading. In the steel elastic
range, the stress vs. lattice strain slopes for each phase are
equivalent for both directions, within experimental error.
In the steel plastic range, however, load transfer from
matrix to reinforcement is more pronounced in the normal
direction than in the transverse direction. Such a direction-
dependent behavior in the steel plastic range is not
observed, within experimental error, for the Fe3C phase.
The anisotropic response of individual lattice reflections is
illustrated in Fig. 9a, which shows the a-Fe (200), (220), and
(211) reflections, corresponding to three different sets of



Fig. 7. Applied stress vs. lattice strain (e22 perpendicular and e11 parallel
to the applied stress) for the a-Fe (220) and Fe3C (220) reflections for
sample oriented with rolling in the ND parallel to beam. The values of the
slopes for the a-Fe (220) and Fe3C (220) reflections are based on best fit
of the experimental data. Error bars are too small to be represented, with
typical strain uncertainties of 40 le. Average elastic strains from finite-
element modeling are shown as solid lines (dashed lines in the Lüders
region are shown for continuity).

Fig. 8. Applied stress vs. lattice strain (e22 perpendicular and e11 parallel
to the applied stress) for beams parallel to ND and TD for (a) the a-Fe
(220) reflection and (b) the Fe3C (220) reflection. The values of the slopes
in the elastic range represent best fit of the experimental data. Average
elastic strains from finite-element modeling are shown as solid lines
(dashed lines in the Lüders region are shown for continuity). (c) Schematic
of sample orientation with respect to tensile stress. The beam is parallel to
either ND or TD, and stress is always parallel to RD.
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matrix grains oriented with their respective crystallographic
direction parallel ðg ¼ 90�=270�Þ or perpendicular ðg ¼
0�=180�Þ to the applied stress. In the steel elastic range, the
a-Fe (200) axial slope (155 GPa) is significantly lower than
those for the (220) and (211) reflections (209 and
206 GPa, respectively); a similar effect is found for transverse
strains. In the plastic range, anisotropy is also present: less
load is transferred to the Fe3C phase from the grains produc-
ing the a-Fe (200) reflection than from those producing the
(220)/(2 11) reflections, in both the axial and transverse
directions. The applied stress vs. lattice strain curves for
the (220) and (21 1) reflections show almost identical behav-
ior. These results are consistent with previous reports [32,35]
and reflect the typical elastic and plastic behavior of iron.

Fig. 9b shows the anisotropic response of the Fe3C
(020), (220) and (112) reflections. In the steel elastic range,
no significant anisotropic effects are observed with slopes
for the three crystallographic reflections equal, within
experimental error, for both transverse and axial strains.
In the plastic range, more load transfer occurs to the
Fe3C (11 2) and (020) reflections than to the (220) reflec-
tion. Other crystallographic planes for both phases were
recorded and fall within the range of the reflections shown
in Fig. 9a and b, and therefore are not presented here.

3.3. Finite-element modeling

Unit-cell three-dimensional (3D) finite-element model-
ing has been shown to be a powerful method for investigat-
ing load sharing between phases in MMCs (see e.g., Refs.
[57–68]). The present study used the ABAQUS software
package (version 6.5 with Computer Aided Engineering,
CAE, module). Due to symmetry, the system can be mod-
eled as one-eighth of a a-Fe cube containing a Fe3C sphere,
with dimensions chosen to achieve a Fe3C volume fraction
of 34%. Infinite, periodic boundary conditions with mirror
planes were applied, thus simulating an infinite cubic array
of Fe3C spheres embedded within the a-Fe matrix. The
total number of elements (C3D20: 3D cubic quadratic ele-
ments with 20 nodes each) was 2079 for the Fe matrix and
2591 for the Fe3C particle. The lower plane of the model is
constrained in the vertical direction, with one corner fully
constrained to prevent overall model translation due to
numerical round-off errors. A tensile force is applied to
each node on the top of the structure, simulating a uniform
stress. The Young’s modulus E and Poisson’s ratio m used
for the two phases were: Ea�Fe ¼ 211 GPa, ma�Fe ¼ 0:29



Fig. 9. Applied stress vs. lattice strain for (a) the a-Fe (200), (220) and
(211) reflections, and (b) the Fe3C (020), (220) and (112) reflections, for
beams parallel to the ND. The values of the slopes represent best fit of the
experimental data. Average elastic strains from finite-element modeling
are shown as solid lines (dashed lines in the Lüders region are shown for
continuity).
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[52] and EFe3C ¼ 202 GPa, mFe3C ¼ 0:29 [52,53], accounting
for the slight increase in Young’s modulus of the Fe3C
(for pure Fe3C, EFe3C ¼ 196 GPa and mFe3C ¼ 0:29) due to
the additions of 1.5 wt.% Cr and 0.5 wt.% Mn [53]. The
model assumes elastic isotropy, and can thus only give an
average response for each of the phases.
Fig. 10. Finite-element model showing the von Mises stress distribution (a
propagation at 700 MPa, and (c) at a maximum load of 1100 MPa. One-eight
The model was loaded in tension elastically up to
700 MPa. A user-defined subroutine was used to read axial
and transverse strain values at each node, from which a
volume-averaged strain value was calculated for each of
the two phases. As expected from their very similar elastic
constants, the lattice strains of the two phases are almost
the same, and are in good agreement with the measured
phase strains in the steel elastic range (Fig. 7). The steel
finite-element Young’s modulus also agrees with the mea-
sured value (Fig. 5). The early stage of the steel plastic
range cannot be modeled with our simple unit-cell
approach, since it is dominated by a local plastic instability
(Lüders band) propagating along the sample length. The
following procedure was used to address this limitation.
Once stress applied on the model reached 700 MPa (very
near the experimental yield stress of 720 MPa), the applied
stress was held constant at 700 MPa while the strain was
increased to 1.1% (corresponding to the end of the Lüders
range in Fig. 5). After Lüders band propagation, the
matrix plasticity was specified to initiate at a lower stress
value of 474 MPa. This behavior corresponds physically
to an upper yield stress of 700 MPa and a lower yield stress
of 474 MPa. Beyond the lower yield stress, the matrix stress
increased due to strain hardening (dotted line in Fig. 5),
resulting in an increase in the steel stress until an average
strain of 6.1% was reached, corresponding to the failure
of the UHCS sample.

To determine the in situ matrix stress–strain curve,
the plastic range of the experimental UHCS stress–strain
curve was first fitted to a power-law hardening equation
[69]:

rT ¼ Ken
T; ð2Þ

where rT is the true stress, eT is the true strain, K is the
strength coefficient and n is the strain-hardening exponent.
A good fit was reached with K and n values of 1490 MPa
and 0.115, respectively. These values were then used as
the starting point for determining the lower yield limit of
the matrix. An iterative process was used to find a-Fe
) before Lüders band propagation at 700 MPa; (b) after Lüders band
h of the Fe3C sphere and the surrounding a-Fe matrix are shown.
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matrix values for K and n, until the model-generated mac-
roscopic steel curve agreed well with the experimental
UHCS stress–strain curve (Fig. 5). With these matrix
parameters fixed at their best-fit values of K ¼ 1424 MPa
and n ¼ 0:244, the volume-averaged strain values were cal-
culated for each phase, using a user-defined subroutine to
read axial and transverse strain values at each node of
the model. These average phase strains in the plastic range
of the steel are plotted as solid lines in Figs. 7–9. It is
apparent that, with only two adjustable parameters (K
and nÞ for the strain-hardening behavior of the matrix, rea-
sonable agreement is achieved over the whole steel plastic
range for both phases and for both transverse and axial
strains.

Fig. 10a–c shows the von Mises stress distribution pre-
dicted by the finite-element model at the end of the elastic
range just before Lüders band propagation (700 MPa
applied stress), at the beginning of the plastic range just
after Lüders band propagation (700 MPa applied stress),
and at the end of the plastic range for the maximum
applied stress of 1100 MPa, respectively. Load transfer
from matrix to reinforcement is apparent in the plastic
range, and is clearly more pronounced at the higher stress
of 1100 MPa. Stresses are also not uniformly distributed
within each phase, with stress concentrations visible in
the center of the particle and at the matrix/particle
interface.
4. Discussion

4.1. Macroscopic tensile behavior

A UHCS with the same composition as the one stud-
ied here, which had been subjected to a lower final heat-
treatment temperature in the study by Taleff et al. [4],
exhibited a higher yield stress (900–1100 MPa) and more
extensive Lüders band strain, probably because of its
finer cementite size. Comparing the present UHCS with
other high- and ultrahigh-carbon steels studied by neu-
tron diffraction by previous researchers (Table 1) [32–
35], it is apparent that the yield stress of the present
UHCS with 1.6 wt.% C (�720 MPa) is within the broad
range of values reported for the other steels: �450 MPa
for 0.4 wt.% C [32], �580 MPa for 1.0 wt.% C [35],
�800 and �1400 MPa for 0.82 wt.% C (as-patented and
swaged-annealed, respectively) [33], and �2400 MPa for
a heavily drawn 0.88 wt.% C steel [34]. The broad range
of yield stress values is due to both varying carbon con-
tent and different processing history, in particular the
presence or absence of cold-work. The UHCS studied
here failed at 1060 MPa after 6.1% strain, which is
within the broad range of previous results �700 MPa
at �3.5% [32], �750 MPa at �8.5% [35], �900 MPa at
�12% and �1300 MPa at �8% (as-patented and
swaged-annealed, respectively) [33], and 1100–1300 MPa
at 3–11% [4]).
4.2. Phase lattice strains in the steel elastic range

Unlike most MMCs [9–28,54–56], the matrix and rein-
forcement in carbon steels show near-zero elastic mis-
match: the polycrystalline Young’s moduli are 211 and
202 GPa for a-Fe and Fe3C, respectively, and the average
Poisson’s ratio is 0.29 for both phases [32,53]. Thus, load
transfer between the two phases is expected to be insignif-
icant in the elastic range of the stress–strain curve, as is
indeed observed in Fig. 7 and in previous neutron experi-
ments on high- and ultrahigh-carbon steels with lower
Fe3C content [32–35].

4.3. Phase lattice strains and stresses in the steel plastic
range

After macroscopic yielding has occurred in the UHCS
sample, marked load transfer from the ductile a-Fe matrix
to the brittle, elastic Fe3C reinforcement is apparent
(Fig. 7). This can be quantified by calculating the average
von Mises equivalent stress for each phase, reff [57]:

reff ¼
1
ffiffiffi

2
p ½ðr11 � r22Þ2 þ ðr22 � r33Þ2 þ ðr33 � r11Þ2�1=2

;

ð3Þ

where r11 is the axial principal stress, r22 and r33 are the
transverse principal stresses, which in turn can be calcu-
lated from the measured elastic principal strains e11 and
e22 (=e33) as [57]:

r11 ¼
E

1þ m
e11 þ

mE
ð1þ mÞð1� 2mÞ ðe11 þ e22 þ e33Þ; ð4aÞ

r22 ¼ r33 ¼
E

1þ m
e22 þ

mE
ð1þ mÞð1� 2mÞ ðe11 þ e22 þ e33Þ;

ð4bÞ

where E is the Young’s modulus, and m is the Poisson’s
ratio of the phase under consideration. Using the mea-
sured lattice strains for the Fe (220) and Fe3C (220)
reflections and the plane-specific elastic constants [52,53],
the effective stresses for the two phases are nearly equal
at the highest applied elastic stress of 720 MPa, just prior
to yielding ðreff ;Fe ¼ 707 and reff ;Fe3C ¼ 663 MPaÞ. Just
after yielding, at the same applied stress of 720 MPa,
but after a macroscopic elastic strain of 0.7% correspond-
ing to the end of the Lüders plateau, the phase-effective
stresses ðreff ;Fe ¼ 418 and reff ;Fe3C ¼ 974 MPaÞ now differ
by a factor of 2.3. Load transfer continues throughout
the steel plastic range up to the last point before fracture
(1060 MPa applied stress), where the phase effective stres-
ses have further diverged ðreff ;Fe ¼ 461 and reff ;Fe3C ¼
1626 MPaÞ, corresponding to a ratio of 3.5. These calcula-
tions and the results shown in Fig. 7 demonstrate that, in
the steel plastic range, the increase in load-carrying capac-
ity of the steel is almost exclusively accounted for by the
Fe3C phase.
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Enhanced load transfer in the plastic range of deforma-
tion has also been observed in previous neutron diffraction
studies of high- and ultrahigh-carbon steels [32–35] and
MMCs [9–28,54–56], where it is explained by the large mis-
match developing between the plastically deforming matrix
and the elastic reinforcement. Interestingly, the reinforce-
ment size in MMCs is typically 1–2 orders of magnitude
larger than in the present UHCS, where the 1 lm size of
the Fe3C particles is close to the critical value below which
the dominant strengthening mechanism becomes Orowan
strengthening [69]. However, the results presented here
clearly indicate that composite strengthening by load trans-
fer in the plastic range of deformation is an important con-
tributor to the strain hardening behavior of this UHCS
with its large volume fraction of Fe3C.

As illustrated in Fig. 6a–c, the lattice strain/spacing vs.
sin2 w plots are near linear for all measured Fe (220) reflec-
tions in the steel elastic range, and for all measured Fe3C
(220) reflections in both the steel elastic and plastic
regions. However, a nonlinear behavior is observed for
the Fe (220) reflections in the plastic region. The linear
fit used for these curves to determine matrix lattice strains
leads thus to higher errors in the steel plastic range. Similar
nonlinear behavior in a-Fe was observed by Hauk et al.
[70] using neutrons and laboratory-source X-rays when
measuring residual stresses in steels subjected to prior plas-
tic deformations. Various fitting methods have been pro-
posed for nonlinear strain vs. sin2 w plots [71], but they
are not used here as they would affect the calculated strains
only marginally given the relatively modest nonlinearity of
the curves.

Comparing the strains reported here by synchrotron X-
ray diffraction with those measured by neutron diffraction
on high- and ultrahigh-carbon steels reported in Refs.
[32,35], it is apparent that the load transfer from the a-Fe
phase to Fe3C phase is qualitatively similar but that quan-
titative differences exist. First, no Lüders band formation is
observed in Refs. [32–34], leading to a gradual increase in
load transfer from the a-Fe phase to the Fe3C phase, while
in Ref. [35] and the present work, a sharp jump in load
transfer is observed after Lüders band propagation has
occurred in the diffraction volume. Also, for steels without
Lüders band formation, no relaxation of the lattice strains
in the a-Fe phase occurs once plasticity initiates. Instead,
as the stress increases, the phase strains retain roughly
the same value achieved at yield. In contrast, high- and
ultrahigh-carbon steels exhibiting Lüders band formation
and propagation, as in Ref. [35] and the present investiga-
tion, show a distinct reduction in lattice strain for the a-Fe
phase and a distinct increase in the Fe3C phase after Lüders
band propagation. However, the exact average phase strain
values are sensitive to the number of reflections observed
and the geometry of the Fe3C phase (leading to a different
Poisson constraint). The magnitude of the drop in lattice
strain for the a-Fe phase is quite similar in the two steels
with Lüders bands with �900 le (average phase strain) in
Ref. [35] with 20 vol.% Fe3C and �1200 le (for the (22 0)
reflection) for the present UHCS with 34 vol.% Fe3C. In
both cases, the a-Fe lattice strains increase only slightly
up to sample failure, suggesting that once the a-Fe phase
becomes plastic, failure is dependent upon the limitations
of the ability of the Fe3C phase to carry the load. In the
case of the UHCS studied here, the maximum effective
stress measured in the Fe3C phase just before sample fail-
ure is �1630 MPa, which is close to �1730 MPa obtained
just before sample failure in Ref. [35]. This result also sug-
gests that the limiting feature of strain redistribution
between phases is plasticity in the a-Fe around the Fe3C
particles, i.e. a larger volume fraction of Fe3C leads to a
larger reduction in the lattice strain in the a-Fe, but is lim-
ited by local plasticity and is not linearly correlated to vol-
ume fraction.

4.4. Anisotropy of lattice strains

In Fig. 8a, the a-Fe (220) reflection is compared in two
orthogonal directions (ND and TD) relative to the rolling
direction (RD, parallel to the applied stress). In the steel
elastic range, no significant differences exist, whereas in
the plastic range, load transfer from matrix to reinforce-
ment is more pronounced in ND than in TD. This differ-
ence in load transfer is not due to a-Fe grain or Fe3C
particle shape, because these are all isotropic. This differ-
ence may be due to a gradient of deformation between
the core and the surface of the rolled sheet resulting in dif-
ferent levels of plastic anisotropy in the two regions [72]. In
the TD case, the X-ray beam samples only the core of the
rolling plate, whereas for the ND case, the core as well as
the front and back rolling surfaces are sampled, as shown
in Fig. 8c. As illustrated in Fig. 4a and b, differences
between the normal direction and the transverse direction
were observed in the initial texture where the less stiff a-
Fe (200) reflections were slightly more oriented in the nor-
mal direction and the stiffer (211) reflections were slightly
less oriented in the normal direction, which further sup-
ports the possibility of a gradient of deformation between
the core and the surface due to rolling. Stress equilibrium
requires that the difference in load transfer present between
ND and TD in a-Fe in the steel plastic range (Fig. 8a) pro-
duce a corresponding response in the Fe3C curves (Fig. 8b).
This effect is not observed in Fig. 8b in which the Fe3C
curves overlap in the steel plastic range, perhaps due to a
lack of sufficient strain measurement resolution.

Fig. 9a illustrates microstructural anisotropic effects
among the elastic load transfer behavior for the a-Fe
(200) and the (220) and (211) reflections. Using the Krö-
ner model [71] with elastic constants for a-Fe from Ref. [73]
provides elastic moduli values (E2 0 0 ¼ 175 GPa and
m = 0.33; E2 2 0=1 1 2 ¼ 225 GPa and m = 0.28) that are some-
what higher than, but probably within error of, experimen-
tal values (E2 0 0 ¼ 155 GPa and m = 0.33; E2 2 0=1 1 2 ¼
209=206 GPa and m = 0.28). By contrast, all three (020),
(220), and (112) Fe3C reflections are approximately equiv-
alent in the steel elastic range, suggesting that no elastic



Fig. 11. Residual elastic phase strains in (a) a-Fe for (200) and (220)
reflections and (b) Fe3C for (220) and (112) reflections vs. macroscopic
steel strain. The solid lines for the axial strains are best-fit curves through
the data points. The dotted lines for the transverse strains are produced by
multiplying the solid lines by a factor indicated next to the lines.
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anisotropic effects are present. However, in the steel plastic
range, less load is carried by the Fe3C (220) reflection than
by the (020) and (112) reflections. A similar anisotropic
Fe3C response was reported by Kanie et al. [33] in the plas-
tic range of a high-carbon steel. Assuming that the Fe3C
phase remains elastic in the steel plastic range, this aniso-
tropic behavior is unexpected in view of the isotropic
behavior in the elastic steel range. One possible explanation
is that there is a crystallographic relationship between the
two phases, so that the anisotropic behavior of the matrix
is reflected in that of the Fe3C.

By comparing the individual a-Fe reflections in Fig. 9a
with data previously reported in Refs. [32–35], the elastic
anisotropy is observed to be qualitatively in good agree-
ment, with the (200) reflection most compliant. However,
the diffraction data presented here have lower error bars,
and the shorter count times allow for a much larger num-
ber of data points in the plastic range. Just after Lüders
band propagation, the lattice strain observed for the a-Fe
(200), (220) and (211) reflections are approximately
equivalent. Upon further loading, the (220) and (211)
reflections initially relax slightly more before increasing
in strain up to failure. This behavior differs from the
(200) reflection, where the strain gradually increases up
to failure, leading to an overall larger magnitude of
strain.

4.5. Residual strains

Unlike most MMCs [9–28,54–56], the present UHCS
shows near-zero residual stresses after cooling from the
processing temperature (Figs. 7–9). This can be explained
by considering the two phenomena producing residual
stresses in this composite: (i) the matrix/reinforcement
mismatch in coefficients of thermal expansions, producing
compressive strains in the cementite phase; and (ii) the
allotropic c–a transformation of the Fe matrix, producing
tensile stresses in the cementite phase. The linear mis-
match strain produced upon cooling from 727 to 20 �C
because of the mismatch in thermal expansion values
for a-Fe ð11:8� 10�6 K�1 [74]) and Fe3C ð6:8� 10�6

K�1 [53]) is calculated as �5� 10�6 � 707 ¼ �0:35%. This
thermal contraction mismatch strain is exactly balanced
by the linear mismatch strain due to the matrix allotropic
expansion (0.35%) [75], thus explaining the observed near-
zero residual strains. It should, however, be noted that the
residual strains measured here come from the deviatoric
strains rather than the hydrostatic strains. To determine
the hydrostatic stresses, one can use stress-free powders
(assuming these represent the true phases in the steel, as
in Ref. [76]), or extract the two phases from steel of the
same composition and heat-treatments to determine the
exact contribution from the hydrostatic strains.

The slightly higher measured values of lattice parame-
ters for both the a-Fe and Fe3C phases as compared to
the literature [52,53] may be within experimental error. It
is also possible that it is a result of alloying additions,
which are known to influence the lattice parameters of both
a-Fe and Fe3C phases [53]: Mn and Cr partially replace Fe
in Fe3C and thus lead to a slightly larger lattice parameter
for the Fe3C phase, since both Mn and Cr are atomically
slightly larger than Fe. Aluminum partitions to the a-Fe
where it is in solid solution, and since Al is also atomically
larger than Fe, this addition also leads to expansion of the
lattice parameter for a-Fe.

Fig. 11a and b shows residual elastic strains for the Fe
(20 0) and (220) reflections and the Fe3C (220) and
(11 2) reflections plotted against the macroscopic steel
strain. As described by Oliver et al. [35], these residual elas-
tic phase strains were calculated by subtracting the extrap-
olated linear elastic response from the non-linear plastic
response under load (both shown in Fig. 7). These authors
showed for a high-carbon steel with 1 wt.% C that this
method gave residual strain values nearly identical to those
measured directly after stress removal. In Fig. 11a and b,
no residual strains are observed up to 0.33% macroscopic
steel strain, as expected from the fact that both phases
remain elastic during loading. During Lüders band propa-
gation (0.33–1.1% steel strain), only a few data points were
collected and residual phase strains remain near zero. After
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Lüders band propagation (>1.1% steel strain), the residual
strains jump to a non-zero value and increase at an initially
high rate until they saturate at a macroscopic steel strain of
about 3%. While these results are qualitatively similar to
those shown in Ref. [35], almost 10 times as many data
points were collected in the present investigation, thus
making the trend of increasing residual strain with plastic
strain much more clearly visible. As suggested in Ref.
[35], saturation occurs as a result of plastic relaxation of
the matrix and suggests that the cementite is loaded elasti-
cally throughout the steel deformation and does not
undergo plasticity, fracture or interfacial damage.

As pointed out by Oliver et al. [35], the ratio of the aver-
age axial to transverse residual strains should be �1/2 for
each phase over the whole range of macroscopic deforma-
tion. This prediction holds for average phase strains, as
determined using Rietveld refinement by Oliver et al. [35]
for their high-carbon steel, but not necessarily for individ-
ual reflections, as examined here. Fitting the curves shown
in Fig. 11a and b, this ratio is found to be approximately
�1/3 for the a-Fe phase (with �0.35, �0.29 and �0.28
for the (200), (220) and (211) reflections, respectively) as
well as the Fe3C phase (with �0.34, �0.35, �0.33, �0.25,
and �0.34 for the (020), (220), (112), (212), and (123)
reflections, respectively).

4.6. Finite-element modeling

Finite-element modeling results for transverse and axial
strains for both phases matched reasonably well with the
experimental applied stress vs. lattice strain curves, as illus-
trated in Figs. 7–9. The model used average isotropic mate-
rial properties, and cannot capture the anisotropic effects
observed experimentally in Figs. 8 and 9. Nevertheless, it
is encouraging that the model predicts axial strains falling
between the measured (220) and (02 0)/(112) Fe3C strains
over the whole range of the steel deformation (Fig. 9b).
Transverse lattice strains for the a-Fe in the steel plastic
range are somewhat underpredicted (Fig. 9a), possibly
due to systematic errors in the determination of the strain
from the nonlinear lattice strain/lattice spacing vs. sin2 w
distribution curves (Fig. 6b). Two other important possible
sources of error in the model are uncertainties in volume
fraction of the two phases and the large-scale inhomogene-
ities observed in the steel (Fig. 3a). Other errors are
imposed by the use of a unit cell approach, given that the
Fe3C particles are neither monosized nor distributed in a
simple cubic lattice. It is also known that an aperiodic
finite-element modeling approach for MMCs provides dif-
ferent stress-partitioning predictions to the periodic finite-
element modeling approach used here [35,57,67,77–82].
Finally, the Cr and Mn content in the Fe3C phase are
unknown and hence so is their effect on the cementite elas-
tic constants.

The finite-element results shown in Figs. 7–9 are spatially
averaged for each phase, so these can be compared to the
measured strains, which are averaged over the diffraction
volume. Fig. 10a–c provides an illustration of the spatial
variation of the effective stress in each phase. In Fig. 10a,
where the steel is in the elastic range, the von Mises stress dis-
tribution is very uniform in both phases, as expected from
the small mismatch in Young’s moduli between the two
phases (211 and 202 GPa for a-Fe and Fe3C, respectively
[32,53]) and the near-zero initial residual strains. After yield-
ing, the von Mises stress (and therefore strain) distribution
become spatially much less uniform (Fig. 10b): a steep stress
gradient exists at the matrix/particle interface, and the
stresses further increase in the center of the precipitate.
While the average phase-effective stress are reff ;ave;Fe ¼
418 MPa and reff ;ave;Fe3C ¼ 974 MPa, the highest stress in
the matrix (near the particle) and in the particle (at its center)
reach values of reff ;max ;Fe ¼ 694 MPa and reff ;max ;Fe3C ¼
1447 MPa, respectively. This spatial anisotropy is further
exacerbated at the maximum applied stress before failure
(Fig. 10c): the phase average effective stresses ðreff ;ave;Fe ¼
461 and reff;ave;Fe3C ¼ 1626 MPaÞ, are much lower than
their peak values ðreff ;max ;Fe ¼ 820 and reff;max ;Fe3C ¼
2925 MPaÞ. It is thus apparent that plastic load transfer
from matrix to reinforcement leads not only to a disparity
in average stresses between the phases (which can be mea-
sured by diffraction) but also to an increase in the spatial
anisotropy of stress within each phase.

5. Conclusions

Synchrotron X-ray diffraction was used to study lattice
strain evolution during tensile loading of a UHCS consist-
ing of an a-Fe matrix containing 34 vol.% Fe3C spheroi-
dized particles about 1 lm in size. The following
conclusions were reached:

1. Unlike ex situ MMCs with similar volume fractions of
ceramic particles, no thermal residual stresses are
observed in the UHCS. This is explained by the fact that
the strain mismatches due to thermal expansion and
allotropic transformation exactly counterbalance each
other.

2. Also unlike ex situ composites, the UHCS shows no
matrix/reinforcement load transfer in the elastic range
of steel deformation, which is explained by a near exact
match in elastic constants for the two phases. However,
like ex situ composites, the UHCS exhibits marked
load transfer from matrix to reinforcement in the plas-
tic range of the steel, as expected if the plastically
deforming matrix sheds load to the elastic
reinforcement.

3. In the steel elastic range, no differences are observed
between the two orthogonal directions relative to the
rolling direction and the applied stress. However, in
the plastic range, somewhat more matrix load transfer
is observed in the normal direction, possibly due to a
gradient of deformation between the core and the sur-
face of the sample due to rolling. This gradient is also
observed in the initial texture of the sample.
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4. Microstructural anisotropic effects on load transfer are
observed for both phases. For the a-Fe phase in the steel
elastic range, the (200) reflection is less stiff than the
(220) and (211) reflections; in the plastic range, less
load transfer occurs for the (200) reflection than for
the (220) and (21 1) reflections. For the Fe3C phase,
no anisotropic effects are present in the steel elastic
range, while in the steel plastic range, more load is car-
ried by the (020) and (112) reflections than by the (22 0)
reflection.

5. Using a two-parameter fitted power-law hardening equa-
tion for the matrix, finite-element modeling was used to
generate the macroscopic stress–strain curve. Despite
its relative simplicity, the finite-element model provides
a reasonable match with experimental diffraction strain
data in both axial and transverse directions, for both a-
Fe matrix and Fe3C reinforcement, and over the whole
elastic and plastic range of deformation of the steel.
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