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Abstract

Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al2O3 preforms with
simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al2O3 phase of the composite are
measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to �350 MPa. Load transfer, found by diffrac-
tion to occur from the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agree-
ment with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially
resolved diffraction measurements show variations in load transfer at two different positions within the composite.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Interpenetrating phase composites (IPCs) are character-
ized by two co-continuous and percolating phases [1].
Ceramic–metal IPCs typically exhibit much higher tough-
ness than pure ceramics. Several liquid-metal processing
routes exist for creating Al2O3–Al IPCs, including infiltra-
tion of porous Al2O3 preforms [2–6], reactive metal pene-
tration [7,8] and infiltration with displacement reactions
[9,10]. These processes typically lead to a random, isotro-
pic, spatial distribution of the Al2O3 and Al phases within
the composite. Recently, Al2O3–Al IPCs with a highly reg-
ular architecture and tailored properties were created by
infiltrating liquid aluminum into alumina preforms with
three-dimensional (3-D) periodic architectures [11], pro-
duced by robocasting, a robotically controlled layerwise
deposition of colloidal inks. This method can create struc-
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tures with spanning (unsupported) features [12–14] and is
related to other direct-write techniques, such as ink-jet
printing [15] and micro-pen writing [16]. Similarly, mull-
ite–aluminum and alumina–aluminum IPCs were produced
by liquid-metal infiltration of mullite or silica preforms cre-
ated by the fused deposition method [17,18].

In the present paper, we investigate interpenetrating
Al2O3–Al IPCs produced by liquid-metal infiltration of 3-
D periodic Al2O3 preforms with simple tetragonal (ST)
symmetry assembled by direct ink writing and previously
demonstrated to exhibit an attractive combination of low
density, high compressive strength and low thermal expan-
sion, together with expected reasonable toughness and
good thermal conductivity [11]. Here, these Al2O3–Al IPCs
are subjected to uniaxial compressive loading, while inter-
nal elastic strains are measured by synchrotron X-ray dif-
fraction of the Al2O3 phase, from which load transfer
from the compliant Al phase to stiffer Al2O3 phase is deter-
mined. Simplified analytical models (based on rule-of-mix-
ture considerations) and more realistic 3-D finite-element
rights reserved.
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models are compared with the experimental data, provid-
ing insights for the optimal design of IPCs for structural
applications.

2. Experimental procedure

2.1. Materials

Ceramic preforms with a regular 0/90� architecture are
produced by direct-write assembly of a colloidal gel-based
ink composed of a mixture of 95 vol.% Al2O3–5 vol.%
ZrO2 particles suspended in water with a total solids con-
tent of �52 vol.%. Fig. 1 provides an idealized schematic
of the 3-D sintered preforms with ST symmetry. The pre-
forms are assembled in a layerwise sequence via direct writ-
ing. The first layer consists of parallel array of ink filaments
(or rods), while the subsequent layer consists of parallel
rods oriented in the orthogonal direction. ‘‘Hairpins”

connect each filament in the horizontal (2–3) planes. This
two-layer pattern is repeated 15 times to create the desired
30-layer preform. After fabrication, these preforms are
dried in air for 24 h and then sintered in air at 1600�C for
2.5 h, resulting in a final rod diameter of approximately
250 lm in the densified structures with nominal preform
dimensions of 5 � 5 � 10 mm3. Additional details for the
ink design and fabrication process are provided in Refs.
[11,19].
Fig. 1. Idealized schematic of 3-D ceramic preform with ST symmetry.
The metal phase (not shown) fills the space between the ceramic rods
(diameter �250 lm) and forms a skin (�100 lm deep) around the
preform. The black arrow forming a 22� angle with the face corresponds
to the beam used for 3 mm measurements, with the area rastered shown as
the black line. The two white arrows perpendicular to the face show the X-
ray beam (150 � 150 lm2) for spatially resolved measurements at
positions (A) and (B). The corresponding beam path is illustrated with
dashed line at the top of the preform, showing that position (A) samples a
ceramic rod (consisting of both column and span regions) while position
(B) samples a single ceramic hairpin (as well as metal).
Sintered ceramic preforms are centered within cuboidal
cavities machined into a graphite block with dimensions lar-
ger by �1 mm than an individual preform. The graphite
block is placed within a graphite crucible and a billet of either
99.99% pure Al or 7075-Al alloy (Al–5.6Zn–2.5Mg–1.6Cu–
0.23Cr, in wt.%) is placed on top of the graphite. The crucible
is introduced in a gas-pressure, liquid-metal infiltration
apparatus [20] and heated under vacuum to a temperature
of 750�C. The liquid metal is infiltrated into the evacuated
open volume of the preform under an argon pressure of
3.5 MPa and the resulting composite is directionally solidi-
fied. For one smaller specimen (4.51 � 4.52 � 9.74 mm3),
all excess metal is removed from the outer faces of the sam-
ple, leaving the edges of the ceramic preform exposed. Two
larger specimens (5.22 � 5.27 � 9.94 mm3) are machined
so that a �0.5 mm thick metal outer layer remains around
the ceramic preform, which is thus not exposed. The pure
Al composites are annealed for 2 h at 350�C and air cooled.
The 7075 alloy composites are annealed for 1 h at 490�C,
water quenched, annealed for 24 h at 120�C, and then water
quenched again, corresponding to a T6 heat-treatment.

2.2. Synchrotron diffraction measurements

Similar to the experimental setup in Refs. [21–28], high-
energy X-ray diffraction measurements are collected at the
1-ID and 11-ID beam lines of the Advanced Photon Source
(Argonne National Laboratory, IL) using a monochro-
matic 81 keV (k = 0.015 nm) or 93 keV (k = 0.013 nm) X-
ray beam for 60 s. The incident X-ray beam in diffraction
mode generally had a square cross-section with a size of
150 � 150 lm2. Complete Debye–Scherrer diffraction rings
from the crystalline phases present in the diffraction vol-
umes are recorded using an image plate (MAR345) with
345 mm diameter, providing a 100 lm pixel size with a 16
bit dynamic range. The sample-to-camera distance was
1.220 or 2.100 m. A typical diffraction pattern for the latter
sample-to-camera distance is shown in Fig. 2. While use of
the longer diffraction distance provides information about
fewer diffraction rings, such as the loss of the (300) reflec-
tion, better resolution in strain measurements is achieved.
Additional calibration diffraction cones are produced from
a paste composed of vacuum grease and pure ceria (CeO2)
powder, which is smoothly applied to the back surface of
the composite. As illustrated in Fig. 2, all phases present
are fine-grained and polycrystalline, leading to smooth dif-
fraction rings, except for the Al phase, which is coarse-
grained (due to the casting method) and thus produces
spotty diffraction rings that cannot be used for strain mea-
surements. As described in detail in Ref. [27], the programs
FIT2D [29,30] and MATLAB [31] are used to determine
lattice strains from distortions of the diffraction rings of
the Al2O3 and ZrO2 phases. The CeO2 reflections near
the center (111) and (200) and outer edge (220) of the
detector, respectively, are used for calibration purposes.

The two larger composites with an Al outer layer
(labeled S-Al for pure Al and S-7075 for the alloyed com-



Fig. 2. Representative X-ray diffraction pattern (quarter of image plate)
of composite S-Al for an average bulk measurement. All full diffraction
rings were identified and assigned to CeO2, Al2O3 or ZrO2, while the Al
rings were spotty and incomplete. For clarity, only some of the rings are
labeled here. The sample-to-camera distance for this diffraction pattern
was 2.100 m. Strains e11 and e22 are measured in the direction shown.
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posites, where ‘‘S” stands for ‘‘simple tetragonal”) are sub-
jected to uniaxial compressive loading and unloading with
�15 MPa stress increments. The third, smaller specimen
without Al outer layer (labeled S-Al(R), where ‘‘R” stands
for ‘‘spatially resolved”) is used to carry out spatially
resolved measurements. These in situ uniaxial compressive
experiments are performed using a small, custom-built,
screw-driven loading system in a general setup described
in more detail previously [19,21–28,32]. Synchrotron X-
ray diffraction measurements are collected at each stress
level. For average bulk measurements, the horizontal beam
impinges on the vertical composite face at a 22� angle and
strain measurements are collected during a vertical 3 mm
raster near the center of the composite. The total diffracting
volume is about 1.6 mm3 (Fig. 1). For spatially resolved
measurements, the composite is positioned with one of its
vertical faces perpendicular to the horizontal beam
(Fig. 1). Two positions (A and B) are studied, as shown
in Figs. 1 and 3: (i) along a horizontal ceramic rod (A);
and (ii) between ceramic rods, along a metallic horizontal
channel (B). Since the beam width (150 lm) is smaller than
the ceramic rod width (�250 lm), the beam path along the
ceramic rod for position (A) consists of roughly equal frac-
tions of ceramic ‘‘columns” and ‘‘struts”; in position (B),
the only ceramic volume diffracting is the ‘‘hairpin” con-
necting two adjacent horizontal rods.

3. Results

3.1. Microstructure

The ceramic volume fractions of the three composites
range from 50% to 60%, as determined from density mea-
surements by He pycnometry. Variations in densities are
due to different amounts of pure Al in the outer layer of
the composite. Dimensions cannot be used for density eval-
uation, due to slight edge rounding. In Ref. [11], a similar but
smaller composite (nominal dimensions: 4 � 4 � 6 mm3

with a 0.5 mm Al ‘‘skin”) is reported to have a ceramic vol-
ume fraction of 70 vol.%, which is higher than the average
ceramic fraction of 53 vol.% for S-Al and S-7075 with outer
Al layers. This discrepancy may be explained by our use of an
experimentally measured density for Al2O3–5 vol.% ZrO2 of
4.075 ± 0.008 g/cm3. This value is significantly higher than
that used in Ref. [11] (3.7 g cm�3) and is much closer to the
theoretical value of 4.07 g cm�3 estimated in Ref. [11]. The
lower density used in Ref. [11] was due to porosity within
the ceramic of up to 9%, whereas the present preforms were
not porous due to improved preform fabrication.

As illustrated in Fig. 3, an X-ray phase-enhanced radio-
graph shows good alignment of the layers and good spac-
ing between horizontal columns except near the sample
edges. No large-scale porosity is observed, as expected
from the above density measurements.
3.2. Synchrotron diffraction strain measurements

3.2.1. Commonality among samples

For all three samples, plots of the applied stress vs. aver-
age elastic lattice strain for the Al2O3 (113) or (300) reflec-
tion are shown in Figs. 4–7. Several other Al2O3 reflections
were used to calculate lattice strains but are not shown,
since the above two reflections are representative of the
bulk due to the observed nearly isotropic Al2O3 elastic
behavior, as further discussed later when comparing
Al2O3 (110), (113), (012) and (024) reflections. Similarly,
the applied stress vs. average elastic lattice strain for the
ZrO2 (101) reflection (Fig. 4b) is shown for sample S-Al
only, since the ZrO2 behavior follows that of the Al2O3

(11 3) reflection and thus does not provide additional infor-
mation. The only difference is that the stress–strain slope
for ZrO2 is lower than that for Al2O3, as expected theoret-
ically from the respective moduli for pure Al2O3

(EAl2O3 = 380 GPa [33]) and pure, partially stabilized
ZrO2 (EZrO2 = 205 GPa [33]).

In Figs. 4–7 the lattice strains for both the Al2O3 and
ZrO2 phases become more compressive (negative) in the
loading direction (e11) and more tensile (positive) in the
transverse direction (e22), as expected from the uniaxial
compressive load applied to the sample in the 1 direction
(Fig. 1). Small, varying amounts of residual strains at zero
applied stress are observed, and they are invariably tensile
in the loading direction and compressive in the transverse
direction. Finally, no large-scale damage is evident within
the composites, either by direct observation of the sample
or from large deviations from linearity in the internal lat-
tice strain vs. applied stress lines during cyclic loading (very
small deviations are observed). The following sections dis-
cuss in detail the different composites tested and their
behavior during compression testing and cyclic loading.



Fig. 3. X-ray phase-enhanced radiograph of middle section of ceramic preform with ST symmetry (projection perpendicular to the 3 direction). The rod
diameter is about 250 lm. The black boxes indicate the beam size (150 � 150 lm2) and position of spatially resolved measurements for positions (A) along
a ceramic rod and (B) between two rods, the sampling metal phase and a single ceramic ‘‘hairpin” connecting two adjacent rods at the edge of the
composite. A column, consisting of the overlap in the 1 direction of the perpendicular rods, is highlighted.
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3.2.2. Bulk diffraction measurements
Sample S-Al, with a density of 3.390 ± 0.003 g cm�3 (cor-

responding to a pure aluminum volume fraction of 49.99 ±
0.24%) and dimensions 5.23 � 5.31 � 9.89 mm3, was cycli-
cally tested without failure as follows: 0 ? �66 ?
�31 MPa, �31 ? �129 ? �34 MPa, �34 ? �196 ? �33
MPa and�33 ? �322 ? 0 MPa. The applied stress vs. aver-
age elastic lattice strain for the Al2O3 (113) and the ZrO2

(101) reflections are shown in Fig. 4a and b, respectively.
Before loading, residual strains for the Al2O3 (11 3)

reflection are zero within measurement errors (12 le in the
loading direction and �12 le in the transverse direction).
Upon cyclic elastic loading, the slopes of the Al2O3 (113)
reinforcement are 242 GPa in the loading direction and
387 GPa in the transverse direction, and remain near-con-
stant as the maximum stress value of the cycle increases.

A similar behavior is observed for the ZrO2 (101) reflec-
tion, as shown in Fig. 4b. Residual strains are again near-
zero (44 le in the loading direction and �40 le in the trans-
verse direction). Upon cyclic elastic loading, the slopes of
the ZrO2 (101) phase within the ceramic reinforcement
are 156 GPa in the loading direction and 237 GPa in the
transverse direction. The maximum longitudinal strain in
the ZrO2 phase is 60% higher than in the Al2O3 phase.

In Fig. 5, the applied stress vs. elastic lattice strains for
the Al2O3 (110), (11 3), (012) and (024) reflections show
nearly isotropic behavior in Al2O3, with slopes in the load-
ing direction of 254, 242, 216 and 232 GPa, respectively.
The Al2O3 (110) reflection is 5–18% stiffer than the
Al2O3 (113), (012), and (024) reflections and the (01 2)
and (024) reflections show almost identical behavior which
is expected since they are symmetrically equivalent. These
two Al2O3 reflections ((0 12) and (024)) provide an internal
check and show the error inherent in strain measurements.
Sample S-7075, with a density of 3.482 ± 0.005 g cm�3

(corresponding to a 7075 alloy volume fraction of 43.29 ±
0.40%) and dimensions 5.20 � 5.20 � 9.99 mm3, was cycli-
cally tested without failure as follows: 0 ? �134 ?
�97 MPa, �97 ? �201 ? �85 MPa, �85 ? �266 ?
�95 MPa, and �95 ? �330 ? 0 MPa. As illustrated in
Fig. 6, residual strains at zero applied stress are tensile in
the loading direction (131 le) and compressive in the trans-
verse direction (�93 le) for the Al2O3 (113) reflection, thus,
shifting the initial starting points for the loading curves.
Upon cyclic elastic loading, the slopes of the Al2O3 (113)
reinforcement are 263 and 443 GPa in the loading and trans-
verse directions, respectively.

3.2.3. Spatially resolved diffraction measurements

Sample S-Al(R), with a density of 3.528 ± 0.0027 g cm�3

(corresponding to a pure aluminum volume fraction of
39.9 ± 2.0%) and dimensions 4.51 � 4.52 � 9.74 mm3, was
tested without failure in a single compressive cycle as follows:
�23 ? �187 ? �34 MPa. At each load increment of
�30 MPa, spatially resolved measurements were taken in
two positions along a horizontal rod (marked A in Figs. 1
and 3) and at a ‘‘hairpin” connecting two rods (B in Figs. 1
and 3). The resulting applied stress vs. average elastic lattice
strain curve for the Al2O3 (300) reflection is shown in Fig. 7.

Similar to bulk measurements, residual strains are pres-
ent for both positions A and B. Since this particular set of
data has no value collected at zero applied load, the resid-
ual strain is extrapolated based on the slope of the best lin-
ear fit of the low-stress region (0–23 MPa). Like the bulk
measurements, position A (along a rod) has residual strains
at zero applied load which are tensile in the loading direc-
tion (136 le) and compressive in the transverse direction
(�103 le). However, position B (‘‘hairpin” only) shows a



Fig. 4. Applied stress as a function of elastic lattice strain (bulk average
values, e11 parallel and e22 perpendicular to the applied stress) for S-Al
composite using (a) Al2O3 (113) reflection and (b) ZrO2 (101) upon
multiple loading–unloading cycles (marked 1–4). Slopes are best-fit values
for all experimental data. Error bars (too small to be represented) are in
the range 10–30 le Three rule-of-mixture models (ROM-1, ROM-2 and
ROM-3) and two finite-element models (FE-1 and FE-2) for the Al2O3

phase are also plotted for the two directions.

Fig. 5. Applied stress as a function of elastic lattice strain (bulk average
values, e11 parallel and e22 perpendicular to the applied stress) for S-Al
using Al2O3 (110), (113), (012) and (024) reflections upon multiple
loading–unloading cycles. (Although not marked here for clarity, the same
four loading steps apply as in Fig. 6a and b.) Slopes are best-fit values for
all experimental data. Error bars (too small to be represented) are in the
range 10–20 le.

Fig. 6. Applied stress as a function of elastic lattice strain (bulk average
values, e11 parallel and e22 perpendicular to the applied stress) for S-7075
composite using the Al2O3 (113) reflection upon multiple loading–
unloading cycles (marked 1–4). Slopes are best-fit values for all experi-
mental data. Error bars (too small to be represented) are in the range 10–
20 le. Three rule-of-mixture models (ROM-1, ROM-2 and ROM-3) and
two finite-element models (FE-1 and FE-2) are also plotted for the two
directions.
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different behavior, with residual strains which are compres-
sive in the loading direction (�143 le) and tensile in the
transverse direction (127 le).

For position A, the slopes of the Al2O3 (300) reinforce-
ment are 202 GPa in the loading direction and 292 GPa in
the transverse direction upon loading. These slopes for
position A are lower than the slopes of the bulk measure-
ments (263 GPa in the loading direction and 443 GPa in
the transverse direction) by a factor of 0.77 and 0.66. For
position B, the slopes of the Al2O3 (300) reinforcement
are 329 GPa in the loading direction and 610 GPa in the
transverse direction upon loading, which are higher than
the slopes of the bulk measurements by a factor of 1.25
and 1.38.
4. Discussion

4.1. Bulk measurements

Despite a large mismatch in coefficient of thermal
expansion between the two phases (24.8 � 10�6 K�1 for
Al vs. 6.2 � 10�6 K�1 for Al2O3, at ambient temperature
[34,35]), residual strains are near-zero in sample S-Al. This



Fig. 7. Applied stress as a function of elastic lattice strain (e11 parallel and
e22 perpendicular to the applied stress) for S-Al(R) using the Al2O3 (300)
reflection upon loading (closed symbols) and unloading (open symbols).
Spatially resolved measurements are along a ceramic rod (A) and along a
metallic channel and a single ‘‘hairpin” connecting two rods (B). The lines
are a linear fit to both loading and unloading data.
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can be explained by the slow air-cooling used after anneal-
ing and the very low yield stress of 99.99% Al allowing for
creep and plastic relaxation of the metal phase. The larger
residual strains in sample S-7075 are explained by the water
quenching used at the end of the heat-treatment and the
higher yield and creep resistance of the metallic phase.

For bulk lattice strain measurements, the stress–strain
slopes of the average bulk Al2O3 (113) reinforcement
phase for S-Al (220–250 GPa, Fig. 5a) and S-7075 compos-
ites (240–270 GPa; although not shown here, values were
determined from a similar plot to that of Fig. 5a) are
approximately 50–60% lower than the Young’s modulus
for the bulk Al2O3–5% ZrO2 phase of 365 GPa, as calcu-
lated using simple rule-of-mixtures from the moduli of pure
Al2O3 (EAl2O3 = 380 GPa [33]) and pure, partially stabi-
lized ZrO2 (EZrO2 = 205 GPa [33]) This is because load
transfer is taking place from the compliant metallic phase
to the stiffer ceramic reinforcement and indicates that the
stress carried by the Al2O3/ZrO2 phase is higher than the
applied stress, as observed in many other metal–ceramic
composites [36,37]. The metallic phase, however, carries
some load, as modeled later, resulting in a higher strength
for the composites as compared to uninfiltrated ceramic
preforms [11]. The metallic phase further prevents buckling
of the ceramic rods and blunts cracks from occurring dur-
ing failure of the ceramic phase, thus delaying catastrophic
failure in compression [11,38–42]. The average stress state
of the Al2O3 phase is far from uniaxial compressive, with
ratios of the longitudinal and transverse slopes ranging
from 0.59 to 0.63, almost twice the Poisson’s ratios value
of 0.33 [43] for pure Al2O3. Similarly, the average stress
state of the ZrO2 phase is also far from uniaxial compres-
sive, with a slope ratio of 0.66, which is approximately
three times the Poisson’s ratios value of 0.23 [33] for pure
ZrO2.

Besides the primary load transfer from the Al phase to
the Al2O3 phase, there is also a secondary, though much
less significant, load transfer within the ceramic reinforce-
ment occurring from the ZrO2 phase to the Al2O3 phase.
ZrO2 was added because (i) it aids sintering by acting as
a grain growth inhibitor, (ii) it decreases residual porosity
and (iii) it increases overall toughness of the reinforcement
by transformation toughening, microcrack toughening and
crack deflection [44–46].

4.2. Spatially resolved measurements

Unlike bulk measurements where residual Al2O3 strains
are near-zero, those for the spatially resolved measure-
ments are measurable (�100–150 le), but the stress magni-
tude (estimated as 40–60 MPa using the bulk Young’s
modulus of pure alumina) is small compared to the fracture
strength of alumina. Fig. 7 shows that load transfer varies
with position: it is more pronounced (as visible from the
lower stress–strain slope) for position (A) than for position
(B), corresponding respectively to a horizontal rod and a
single ‘‘hairpin” connecting two rods.

As visible in Figs. 1 and 3, a horizontal rod consists of
alternating regions of columns and struts. The column
regions in the rod consist of material in contact, immedi-
ately above and below, with two other perpendicular hori-
zontal rods; this region is thus subjected directly to the
uniaxial vertical load. The strut region of the horizontal
rod connects two vertical columns, and is surrounded ver-
tically by metallic material. The strut is thus under com-
pressive longitudinal stresses transmitted by the
surrounding metal, and it is also subjected to transverse
compressive stresses, due to the Poisson’s expansion of
the neighboring columns subjected to longitudinal com-
pressive stresses. These transverse compressive strains
translate into longitudinal tensile strains in the struts,
opposite in sign to the compressive longitudinal strains
resulting from the metallic phase. Thus, the alumina scaf-
fold can be visualized as vertically aligned ‘‘fibers” (or col-
umns, as shown in Fig. 3) connected in two dimensions by
short horizontal struts.

During compressive loading, the rod (position A) expe-
riences, on average, compressive longitudinal strains and
tensile transverse strains (Fig. 7); however, the stress state
is far from uniaxial, since the ratio of the two slopes in
Fig. 7 is 202/292 = 0.69, very much in excess of the Pois-
son’s ratio value of 0.33 [43]. Thus, the magnitude of the
transverse tensile strains is much higher than expected if
the scaffold was under purely uniaxial compressive stress.

By contrast, position B (the ‘‘hairpin” between two col-
umns which is similar to a single strut) exhibits a slope ratio
of 329/610 = 0.53, which is closer to the Poisson’s ratio of
pure alumina. In fact, this slope ratio is close to that found
for the bulk measurement of sample S-Al, which is 242/
387 = 0.63. For position B, both slopes are however smal-
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ler than for the bulk measurement, indicating that the
‘‘hairpins” are subjected to smaller stresses than the aver-
age scaffold. Fracture is thus less likely to occur in the
hairpins.

4.3. Load transfer modeling by rule-of-mixture

As illustrated in Fig. 8, the complex 3-D architecture of
the composites was modeled using a simplified 2-D rule-of-
mixture approach [47] leading to three simplified models
(labeled ROM-1, ROM-2 and ROM-3), which are similar
to those models presented for IPCs in Refs. [10,16,40,41,
48–53] and provide the longitudinal and transverse appar-
ent elastic moduli for the Al2O3 phase, Eapp,cer, correspond-
ing to the experimentally measured slopes of the stress–
elastic strain curves in Figs. 4–7. Input parameters are
the Young’s modulus E and Poisson’s ratio m of the metal-
lic phase (EAl = 69 GPa and mAl = 0.33 [43], EAl7075 =
71.7 GPa and mAl7075 = 0.33 [43]) and the ceramic phase
(EAl2O3-ZrO2 = 365 GPa and mAl2O3-ZrO2 = 0.26). The latter
parameters are calculated based on the Eshelby method
and on simple rule-of-mixtures, respectively, from the mod-
uli and from Poisson’s ratios of pure Al2O3 (EAl2O3 =
380 GPa and mAl2O3 = 0.26 [33]) and pure, partially stabi-
lized ZrO2 (EZrO2 = 205 GPa and mZrO2 = 0.23 [33]). Calcu-
lated apparent moduli according to the ROM models are
listed in Table 1, assuming a pure Al volume fraction of
50%, as measured experimentally for sample S-Al. This
Fig. 8. Rule-of-mixture models for an interpenetrating ceramic–metal
composite, with phase 1 for the metal, and phase 2 and 3 for the ceramic.
Model ROM-1 assumes iso-strain for both phases. Model ROM-2
considers ceramic within a vertical column (region 3), and a combination
of ceramic horizontal struts and metal phase (region 1 + 2). Model ROM-
3 considers a combination of metal and ceramic column (regions 1 + 2)
and a ceramic rod (region 3, consisting of both column and strut regions).
corresponds to a volume fraction f1 = 0.5 for the Al metal
phase and a volume fraction f2 + f3 = 0.5 for the ceramic
reinforcement (95% Al2O3–5% ZrO2), where f2 = 0.25
and f3 = 0.25.

The models are derived in Appendix A and their geom-
etry is illustrated in Fig. 8. Model ROM-1 is the most sim-
plistic and assumes that all ceramic (in both struts and
columns) is present as longitudinal fibers (or slabs) within
the metal phase, both phases creating an iso-strain compos-
ite. Model ROM-2 considers two regions: (i) ceramic
within a vertical column (region 3); and (ii) a mixture of
metal phase (region 1) and horizontal ceramic strut (region
2). The latter region (1 + 2) is modeled as an iso-stress
composite which is in parallel with the former region 3
forming an iso-strain composite. The total ceramic strain
is then obtained by a volume averaging of the strains in
the ceramic column (region 3) and strut (region 2). Model
ROM-3 also considers two regions: (i) a mixture of metal
phase (region 1) and ceramic columns (region 2); and (ii)
a mixture of ceramic horizontal strut and ceramic column
(region 3). The former region (1 + 2) is modeled as an
iso-strain composite which is stacked with the latter region
3 in an iso-stress composite. The total ceramic strain is
again obtained by a volume averaging of the strains in
the ceramic columns and struts.

4.4. Load transfer modeling by finite-element calculations

Calculations are performed using the ABAQUS soft-
ware package [54]. Three-dimensional finite-element mod-
eling using spatially repeating simple unit cells has been
shown to be a powerful method for investigating load shar-
ing between phases in composites [27,55–57]. In the present
case, given the 3-D periodic architecture of the composite,
a unit-cell approach is particularly appropriate. Although
these composites have tetragonal symmetry, they are not
significantly far from cubic symmetry, so that cubic sym-
metry is assumed for simplicity. The model, shown in
Fig. 9, consists of a cube containing two ceramic rods
stacked perpendicular to each other, with dimensions cho-
sen to achieve a rod volume fraction of 50.0% for S-Al and
56.7% for S-7075. Only one-quarter of each rod is used, as
allowed by the use of infinite, periodic boundary conditions
Table 1
Calculated composite modulus Ec and apparent phase moduli Eapp for
each phase (met: metal, cer: ceramic) and each direction (no label:
longitudinal, trans: transverse) according to the three ROM and two FE
models for a pure Al volume fraction of 50% (as measured experimentally
for sample S-Al) and a 95% Al2O3–5% ZrO2 ceramic fraction of 50%.

Ec Eapp,met Eapp,cer Eapp,met,trans Eapp,cer,trans

ROM-1 217 217 217 �811 �811
ROM-2 162 118 257 �359 �997
ROM-3 150 126 187 �381 �530
FE-1 160 128 262 �863 �520
FE-2 156 126 253 �837 �509

All values are in GPa.
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with mirror planes, which simulate an infinite cubic-sym-
metry array of ceramic rods stacked with a regular 0/90�
architecture, embedded within a metallic phase. The total
number of elements (C3D20) was 9228 for the metal phase
and 6368 for the ceramic rods. The lower horizontal plane
of the model is constrained in the vertical direction, with
one corner fully constrained to prevent overall model
translation due to floating-point round-off errors. A verti-
cal compressive force is applied to each node on the upper
Fig. 9. Finite-element model (FE-2: 95% Al2O3–5% ZrO2) for a cubic symme
(with mesh) and (b) at a maximum stress of �360 MPa (without mesh). One qua
the ceramic reinforcement embedded in a cube of Al metal phase. The thick b
horizontal plane of the model, simulating a uniform stress.
The same metal and ceramic elastic constants were used as
for the ROM calculations. The ceramic is assumed to
remain elastic, while the metallic phase can deform plasti-
cally according to published stress–strain curves for pure
aluminum (Al-1100) and the Al 7075 alloy [58], with yield
stresses of 33 and 531 MPa, respectively, with the Al 7075
alloy strain-hardening significantly more than pure alumi-
num. Two finite-element models (FE-1 and FE-2) were cre-
try composite showing the von Mises stress distribution (a) at �210 MPa
rter rod perpendicular to and stacked upon another quarter rod represents
lack lines highlight the two rods.
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ated, with ceramic phases consisting of 100% Al2O3 and
95% Al2O3–5% ZrO2, respectively.

An example of the von Mises stress distribution using
finite-element model FE-2 (95% Al2O3–5% ZrO2) for a
composite with 50.0 vol.% (corresponding to sample S-
Al) is shown in Fig. 9 for applied stresses of �210 (the
onset of plasticity) and �360 MPa (the maximum stress
used experimentally). As illustrated in Fig. 9, non-uniform
stress in the ceramic reinforcement, as well as load trans-
fer from the metal to the ceramic phase, are observed.
Like the spatially resolved experimental data for the
Al2O3 phase, higher stresses are observed in the ceramic
column compared to the ceramic struts. The largest stres-
ses are observed in the center of the rods and at the notch
at the contact line between the two ceramic rods; how-
ever, there is also a stress reduction at the contact plane
away from the contact line, which is likely a Hertzian
contact effect.

An example of the longitudinal elastic strain distribution
at a maximum applied stress of �360 MPa in the longitu-
dinal and transverse directions is shown in Fig. 10a and
b. In the longitudinal direction, the Al plastic zone is lim-
ited only to a small fraction of the Al phase at the interface
between the Al metal and the Al2O3 ceramic reinforcement,
where the hydrostatic component is larger. In the trans-
verse direction, the Al plastic zone is non-uniformly distrib-
uted with higher strain observed in the center of the Al
metal and at the interface under the ceramic rods.

4.5. Comparison between the ROM and FE models

From Table 1, the modulus of the composite is stiffest in
the ROM-1 model (Ec = 217 GPa), as expected. The mod-
ulus of the composite for the ROM-2 (EC2 = 162 GPa) and
ROM-3 (EC3 = 150 GPa) models are both approximately
three-fourths of that of the ROM-1 model (Ec = 217 GPa)
and bracket the values of the more realistic FE models
(Ec = 160 and 156 GPa).

The apparent modulus of the ceramic reinforcement in
the longitudinal direction (Eapp,cer) are in the range 190–
260 GPa for the ROM-1, ROM-2, and ROM-3 models.
The values for ROM-1 (217 GPa) and ROM-3 (187 GPa)
models are significantly lower than values predicted by
the FE models (253–262 GPa), i.e. FE is predicting that
the strain on the ceramic, and thus the load transfer to
the ceramic, is less than these simplified ROM models.
Only the ROM-2 (257 GPa) model predicts a similar value
to the FE models and is thus relatively accurate at predict-
ing the value in the longitudinal direction. However, the
apparent modulus of the ceramic reinforcement in the
transverse direction (Eapp,cer,trans) for the ROM-1 and
ROM-2 (�811 to �997 GPa) predict much larger values
than ROM-3 and the two FE models (�500 to
�530 GPa). While differences are expected, given how
much more simplified the ROM models are as compared
to the FE models, it is difficult to determine a priori the
magnitude of the difference.
4.6. Comparison between the experimental data and the

models

As illustrated in Figs. 4a and 6, the apparent Al2O3

moduli predicted by the ROM and FE models (Eapp,cer)
are compared with bulk measurements from Al2O3 (113)
for the S-Al and S-7075 bulk composite measurement for
the longitudinal (e11) and transverse (e22) directions. All
models assume elastic isotropy, and can thus only give an
average response for each of the phases. For each set of
data, the appropriate ceramic volume fraction (50.0 vol.%
for S-Al and 56.7 vol.% for S-7075) were used for the cal-
culations. The ROM-1 and FE-2 models have values (217
and 253 GPa, respectively) for the apparent ceramic mod-
ulus in the longitudinal direction within the range deter-
mined experimentally (216–254 GPa), while the ROM-2
(257 GPa) slightly overpredicts the value and the ROM-3
(187 GPa) model significantly underpredicts the value.
The FE-1 model (assuming 100% Al2O3) predicts an appar-
ent modulus (262 GPa) slightly above the upper limit of the
experimental range, while the FE-2 model (with a more
realistic 95% Al2O3, 5% ZrO2) is within the experimental
range with 253 GPa. All of the models underpredict the
strain in the transverse direction and thus overpredict the
experimental values (�340 to �430 GPa) for the apparent
ceramic modulus in the transverse direction; however, the
ROM-3 (�530 GPa), FE-1 (�520 GPa) and FE-2
(�509 GPa) models are much closer to the experimental
values observed. This underprediction of the strain in the
transverse direction may be a result of the slight deviation
from linearity observed in the experimental data, possibly
due to damage of the ceramic phase.

Although very simplistic, the ROM-1 model matches
reasonably well with the experimental data in the longitu-
dinal direction but drastically underpredicts the experimen-
tal strains in the transverse direction. Similar to the ROM-
1 model, but with a slightly more realistic geometry, the
ROM-2 model only slightly overpredicts the experimental
data in the longitudinal direction, but underpredicts even
more the strain in the transverse. This is also true with
the ROM-3 model, but the ROM-3 model significantly
overpredicts the strain in the longitudinal direction; how-
ever, this model, while still underpredicting the strain in
the transverse direction, matches the experimental data in
the transverse direction much better than both the ROM-
1 and ROM-2 models. Unlike the ROM models, the two
FE models match the experimental data reasonably well
in both the longitudinal and transverse directions, but
slightly underpredict the strains. All of the models fail to
capture the slight deviation from linearity observed in the
experimental data at higher stresses, which is possibly a
result of damage in the ceramic phase.

A limitation common to both models is that they
assume elastic isotropy and can thus only give an average
response for each of the phases present. Additionally, the
measured data are for a specific Al2O3 reflection (113)
and the models use the average modulus for the Al2O3



Fig. 10. Finite-element model for a cubic symmetry composite showing the elastic strain distribution at a maximum stress of �360 MPa in (a) the
longitudinal direction and (b) the transverse direction. One quarter rod perpendicular to and stacked upon another quarter rod represents the ceramic
reinforcement embedded in a cube of Al metal phase. The thick black lines highlight the two rods.
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phase. Fortunately, as illustrated in Fig. 5, very little aniso-
tropic effects are present in the Al2O3 phase. Therefore,
some error is associated in both the theoretical value and
in the experimental value used for the modulus of the
Al2O3 phase. Another limitation is that the models treat
the Al2O3–5% ZrO2 phase as homogeneous, ignoring its
true structure that consists of an Al2O3 matrix containing
particles of ZrO2. Another possible source of error is asso-
ciated with the facts that the model is perfectly aligned with
the applied stress, and that no defects such as cracks, inter-
face delamination or ‘‘hairpins” near the edges are consid-
ered. Finally, another source of error is that the models
treat the metal ‘‘skin” as additional metal phase and do
not account for the edge effects that may occur with a pure
metal ‘‘skin”. These edge effects weaken the overall com-
posite and are expected to lower the overall amount of
strain observed in the ceramic phase. None of the models
considers the possibility of fracture in the ceramic, which
may explain the discrepancy in the longitudinal and trans-
verse directions, especially for the FE models.
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A specific limitation of the ROM models is that they are
not 3-D models and so treat the phases as 2-D slabs, which
are a poor representation of the complex geometry of the
composites. Finite-element modeling overall is an improve-
ment over the ROM models since it is more complex and
matches more closely with the experimental geometry at
the global level (struts, columns, and rods) and at the local
level (curved region and then flat surface at contact
between rods). Furthermore, the finite element provides
physical continuity between the phases at all interfaces
and takes into account metal plasticity, unlike the ROM
models.

5. Conclusions

Interpenetrating Al2O3–Al composites are produced by
liquid-metal infiltration of 3-D periodic Al2O3 preforms
fabricated by direct-write assembly, and subjected to syn-
chrotron X-ray diffraction to measure elastic strains in the
ceramic phase. The as-fabricated composites exhibit low
residual strains in the ceramic phase from thermal mis-
match. During uniaxial compression, longitudinal ceramic
strains increase linearly with applied stress, despite the
onset of metal plasticity and possible damage accumula-
tion in the ceramic. The high values of these strains indi-
cate that load transfer is occurring from the metallic
phase. Simple rule-of-mixture models (assuming purely
elastic behavior) and more complex finite-element models
(allowing for metal plasticity and taking into account the
complex geometry of the composites) can predict with
reasonable accuracy the strains in the ceramic phase. Spa-
tially resolved measurements show that more strain (and
thus higher stress) is observed in the horizontal ceramic
‘‘rods” than in the ceramic ‘‘hairpin” connecting them,
as expected.

Acknowledgements

The authors thank the following APS researchers for
experimental assistance: Drs. Ulrich Lienert, Kamel Fez-
zaa, and Wah-Keat Lee (SRI-CAT) and Dr. Mark Beno
and Chuck Kurtz (BESSRC-CAT). Use of the APS was
supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Science, under contract num-
ber DE-AC02-06CH11357. J.A.L. and R.R. acknowledge
funding provided by NSF Grant # (DMR01-17792).

Appendix A. Model ROM-1

The first model assumes that all ceramic (in both struts
and columns) is present as longitudinal slabs (or fibers)
within the metal phase, from which a longitudinal iso-
strain composite modulus and the strain in the ceramic
phase are calculated using the following equations:

eC1 ¼ e1 ¼ e2;3 ¼
rapp

EC1

ð1Þ
where eC1 is the longitudinal strain in the composite, e1 is
the longitudinal strain in the metal, e2,3 is the longitudinal
strain in the ceramic reinforcement, rapp is the applied
stress and EC1 is the Young’s modulus of the composite
for Model 1, given by the rule-of-mixture (ROM):

EC1 ¼ f1Emet þ ðf2 þ f3ÞEcer ð2Þ
where Emet is the Young’s modulus of the metal, Ecer is the
Young’s modulus of the ceramic reinforcement, f1 is the
volume fraction of the metal phase, and f2 and f3 are the
two components of the volume fraction of the ceramic rein-
forcement.EC1,app,,trans, the apparent modulus of the com-
posite in the transverse direction for Model 1, is defined as:

EC1;app;trans ¼
f1Emet

�mmet

þ ðf2 þ f3ÞEcer

�mcer

ð3Þ
Appendix B. Model ROM-2

B.1. Longitudinal direction

The second model considers two regions: (i) ceramic
within a vertical column (region 3); and (ii) a combina-
tion of ceramic horizontal struts and metal (region
1 + 2). The latter region is modeled as an iso-stress
sub-composite which is combined in parallel with the for-
mer region in an iso-strain composite. The overall cera-
mic strain is then obtained by a volume averaging of
the strains in the ceramic columns (region 3) and struts
(region 2). We start from the following iso-stress equa-
tion for region 1 + 2:

r1 ¼ r2 ¼ e1Emet ¼ e2Ecer ¼ e1;2E1;2 ð4Þ
where r1 is the applied stress in the metal phase, r2 is the
applied stress in the horizontal strut, e1 is the longitudinal
strain in the metal phase, e2 is the longitudinal strain in the
horizontal strut, E1,2 is the Young’s modulus of the iso-
stress component and e1,2 is the longitudinal strain in the
iso-stress component, which is then used in the following
iso-strain equation to solve for EC2:

eC2 ¼ e3 ¼ e1;2 ¼
rapp

EC2

ð5Þ

In this second model, EC2 (the modulus of the compos-
ite) is given by the ROM as:

EC2 ¼ ðf1 þ f2ÞE1;2 þ f3Ecer ð6Þ
where E1,2 is given by the ROM as:

E1;2 ¼
f1

f1þf2

Emet

þ
f2

f1þf2

Ecer

 !�1

¼ ðf1 þ f2Þ
f1

Emet

þ f2

Ecer

� ��1

ð7Þ

From these equations, the apparent modulus (slope of
the applied stress vs. elastic strain plots) of the metal phase
Eapp,met can be found from the following equations,

Starting with:
Eapp;met ¼
rapp

e1

ð8Þ
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and using the iso-stress relations for e1 from Eq. (4) and the
iso-strain relations for e1,2 from Eq. (5), a compact form for
Eapp,met is found to be:

Eapp;met ¼
EC2Emet

E1;2

ð9Þ

Substituting Eqs. (6) and (7) into Eq. (9), this equation
can be put into terms of the Young’s moduli of the metal
(Emet) and the ceramic (Ecer), as well as the volume frac-
tions (f1, f2 and f3) of the metal and the ceramic phases,
as follows:

Eapp;met ¼
ðf1 þ f2Þ2 f1

Emet
þ f2

Ecer

� ��1

þ f3Ecer

� �
Emet

ðf1 þ f2Þ f1

Emet
þ f2

Ecer

� ��1
ð10Þ

The apparent modulus of the ceramic reinforcement
Eapp,cer is found by starting with:

Eapp;cer ¼
rapp

e2;3

ð11Þ

where e2,3, the longitudinal average strain in the ceramic
reinforcement, is obtained by volume averaging the strains
in the ceramic columns (region 3) and struts (region 2):

e2;3 ¼
f2e2 þ f3e3

f2 þ f3

ð12Þ

Using the iso-stress relations for e2 from Eq. (4) and the
iso-strain relations for e1,2 and e3, Eq. (11) becomes:

Eapp;cer ¼ ðf2 þ f3Þ
EC2Ecer

f2E1;2 þ f3Ecer

� �
ð13Þ

which can be expressed in terms of Emet, Ecer and the vol-
ume fractions (f1, f2 and f3) as:

Eapp;cer ¼ ðf2 þ f3Þ
f1 þ f2ð Þ2 f1

Emet
þ f2

Ecer

� ��1

þ f3Ecer

� �
Ecer

f2ðf1 þ f2Þ f1

Emet
þ f2

Ecer

� ��1

þ f3Ecer

0
BB@

1
CCA

ð14Þ
B.2. Transverse direction

To find the modulus of the composite and the apparent
moduli of the metal and ceramic phases in the transverse
direction, the Poisson’s ratio of the metal and ceramic
phases, mmet and mcer, are used. The apparent transverse
modulus of the metal is defined as:

Eapp;met;trans ¼
rapp

e1;trans

¼ rapp

�m1e1

¼ rappEmet

�m1e1;2E1;2

ð15Þ

where the transverse strains e1 and e1,2 are given by the iso-
strain relations from Eq. (5), leading to the following
equation:

Eapp;met;trans ¼
�EC2Emet

m1E1;2

ð16Þ
Introducing E1,2 and EC2 as given by the ROM in Eqs.
(6) and (7) gives:

Eapp;met;trans ¼ � f1 þ f2 þ
f3Ecer

ðf1 þ f2Þ f1

Emet
þ f2

Ecer

� ��1

0
B@

1
CAEmet

mmet

ð17Þ
Similarly, the apparent transverse modulus of the cera-

mic is defined as:

Eapp;cer;trans ¼
rapp

e2;3;trans

ð18Þ

where e2,3,trans, as in Eq. (12), is obtained by volume aver-
aging the transverse strains in the ceramic columns (region
3) and struts (region 2):

e2;3;trans ¼
f2e2;trans þ f3e3;trans

f2 þ f3

ð19Þ

and the transverse strains e2,trans and e3,trans are defined as:

e2;trans ¼ �m2e2 ð20aÞ
e3;trans ¼ �m3e3 ð20bÞ

where the longitudinal strains e2 and e3 are defined by the
iso-stress and iso-strain relations in Eq. (4) and (5), respec-
tively. Then, Eapp,cer,trans becomes:

Eapp;cer;trans ¼ �
ðf2 þ f3Þððf1 þ f2ÞE1;2 þ f3EcerÞ

f2E1;2 þ f3Ecer

� �
Ecer

mcer

ð21Þ
Appendix C. Model ROM-3

C.1. Longitudinal direction

Like the second model (ROM-2), this model considers
two regions: (i) a mixture of ceramic columns and metal
phase (region 1 + 2); and (ii) a mixture of ceramic horizon-
tal struts and ceramic columns (region 3). The former
region (1 + 2) is modeled as an iso-strain sub-composite
which is combined in series with the latter region 3 in an
iso-stress composite. The total ceramic strain is again
obtained by a volume averaging of the strains in the cera-
mic columns and struts using the following iso-strain
equation:

e1;2 ¼ e1 ¼ e2 ¼
r1;2

E1;2

¼ r1

Emet

¼ r2

Ecer

ð22Þ

where e1,2 is the longitudinal strain in the iso-strain compo-
nent, e1 is the longitudinal strain in the metal phase, e2 is
the longitudinal strain in part of the ceramic columns,
r1,2 is the applied stress of the iso-strain component, and
E1,2 is the Young’s modulus of the iso-strain component,
which is defined as:

E1;2 ¼ f1Emet þ f2Ecer ð23Þ
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The Young’s modulus of the iso-strain component (E1,2)
can be related to region 3 by the following iso-stress
equation:

r1;2 ¼ r3 ¼ rapp ¼ e3Ecer ¼ e1;2E1;2 ¼ eC3EC3 ð24Þ
where r1,2 is the applied stress in the iso-strain component,
r3 is the applied stress in region 3 and e3 is the longitudinal
strain in region 3. The modulus of the composite (EC3) is
given by the ROM as:

EC3 ¼
f1 þ f2

E1;2

þ f3

Ecer

� ��1

ð25Þ

and substituting Eq. (23) into Eq. (25) gives:

EC3 ¼
f1 þ f2

f1Emet þ f2Ecer

þ f3

Ecer

� ��1

ð26Þ

From these equations, the apparent modulus of the
metal phase can be solved from the following equation:

Eapp;met ¼
rapp

e1

ð27Þ

and introducing Eq. (22) into Eq. (27) gives:

Eapp;met ¼ E1;2 ð28Þ
From Eq. (23), Eq. (28) is the same as:

Eapp;met ¼ f1Emet þ f2Ecer ð29Þ
Now, the apparent modulus of the ceramic phase can be

solved accordingly:

Eapp;cer ¼
rapp

e2;3

ð30Þ

where e2,3, the average longitudinal strain of the ceramic
phase, like Eq. (12), is defined as:

e2;3 ¼
f2e2 þ f3e3

f2 þ f3

� �
ð31Þ

Substituting this equation into Eq. (30) gives:

Eapp;cer ¼
rapp

f2e2þf3e3

f2þf3

ð32Þ

and by using the iso-strain relations for e2 from Eq. (22),
for e3 from Eq. (24) and the iso-stress relations for e1,2

and e3 from Eq. (25), ceramic apparent modulus becomes:

Eapp;cer ¼
rappðf2 þ f3Þ
f2rapp

E1;2
þ f3rapp

Ecer

ð33Þ

which further simplifies, using Eq. (23), to:

Eapp;cer ¼
f2 þ f3

f2

f1Emetþf2Ecer
þ f3

Ecer

ð34Þ
C.2. Transverse direction

Poisson’s ratio is used, similar to Eq. (15), to find the
apparent transverse modulus of the metal phase as:
Eapp;met;trans ¼
rapp

e1;trans

¼ rapp

�m1e1

¼ �E1;2

m1

ð35Þ

where e1 is given by the iso-stress relations from Eq. (22)
and E1,2 is given by the ROM in Eq. (23), leading to:

Eapp;met;trans ¼
f1Emet þ f2Ecer

�mmet

ð36Þ

Using Eq. (18), the apparent transverse modulus of the
ceramic phase is defined as:

Eapp;cer;trans ¼
rapp

e2;3;trans

ð37Þ

where e2,3,trans, like Eq. (12) and (19), is obtained by volume
averaging the transverse strains in the ceramic columns (re-
gion 3) and struts (region 2) as:

e2;3;trans ¼
f2e2;trans þ f3e3;trans

f2 þ f3

ð38Þ

As for Eq. (20a,b), the transverse strains e2,trans and e3,trans

are defined as follows:

e2;trans ¼ �m2e2 ð20aÞ
e3;trans ¼ �m3e3 ð20bÞ

where e2 and e3 are given by the iso-strain and iso-stress
relations in Eqs. (22) and (24), respectively. Then, Eapp,cer,-

trans becomes:

Eapp;cer;trans ¼
�ðf2 þ f3Þðf1Emet þ f2EcerÞEC3

f2mcerEC3 þ f3mcerðf1Emet þ f2EcerÞ
ð39Þ
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