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Abstract-Most models of internal stress superplasticity predict a linear relationship between the 
applied stress and the plastic strain per cycle, and are only valid at low applied stresses. In the present 
paper, we extend the original linear theory of phase transformation superplasticity by Greenwood and 
Johnson [l] and derive a non-linear closed-form solution valid over the whole range of stresses, from 
the low-stress regime (where a linear relationship between strain and stress is predicted in agreement 
with the model by Greenwood and Johnson (Proc. R. Sot. Lond., 1965, 283, 403), to the high-stress 
regime (where the strain increases non-linearly as the applied stress approaches the yield stress of the 
weaker phase). The model is found to be in agreement with literature data on transformation superplas- 
ticity of iron spanning both stress regimes. Furthermore, the model is adapted to the case where in- 
ternal stresses are produced by thermal expansion mismatch: it is compared to experimental literature 
data for metals with anisotropic thermal expansion (Zn and U) and for metal matrix composites with 
inhomogeneous thermal expansion (Al-Sic). 8 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 

Internal stress superplasticity arises in polycrystal- 
line materials upon biasing of internal mismatch 
stresses or strains, that are produced during a 
thermal excursion, by an externally applied stress. 
This thermal mismatch can occur (i) between 
grains with anisotropic coefficients of thermal 
expansion (CTE), e.g. in zinc [2,3] and uranium 
[3,4]; (ii) between phases with different CTE, e.g. 
in Al-SIC [S-7]; or (iii) between grains during a 
phase transformation exhibiting two allotropes 
with different densities, e.g. in iron [l, 8-101 and 
titanium [ 1, 11, 121. Upon repeated thermal 
cycling, plastic increments can be accumulated to 
give large total strains (> 100%) without failure, a 
mechanism called CTE-mismatch superplasticity or 
transformation mismatch superplasticity, respect- 
ively. Depending on the homologous temperature 
and the nature of the material, internal stresses are 
relaxed either by a time-dependent mechanism at 
high homologous temperatures, i.e. creep, or by a 
time-independent mechanism at low homologous 
temperatures, i.e. yield. 

Assuming an ideally plastic material undergoing 
a phase transformation, Greenwood and Johnson 
[l] derived an approximate analytical solution for 
the strain per transformation t (e.g. either cc-Fe to 
y-Fe or y-Fe to U-Fe) as a function of the volume 
mismatch AV/V between the two allotropic phases, 
the externally applied uniaxial stress 0 and the yield 
stress oY of the weaker phase: 

5AV 0 

t-61/Y’ 

Petsche and Stangler [ 131 extended the model by 
Greenwood and Johnson [1] qualitatively to include 
temperature cycle characteristics, e.g. cycle ampli- 
tude and frequency. Mitter [14] introduced a linear 
model incorporating the yield stress of the stronger 
phase. He also numerically evaluated the model of 
Greenwood and Johnson [l] at large values of the 
applied stress where he predicted a departure from 
the linear strain-stress relationship given in 
equation (1). He further formulated a micromecha- 
nical model which was used by Fischer [ 151 to de- 
rive a closed-form analytical solution for the strain 
per transformation c valid at all stresses. Diani et 
al. [16] and Sato and Kuribayashi [17] developed 
complex theoretical models based on continuum 
micromechanics for transformation induced plas- 
ticity and internal stress superplasticity, respectively. 
Applying these models to a phase transformation 
with a volume mismatch under a uniaxial external 
stress gives linear relations between the plastic 
strain and the applied stress similar to equation (1). 
Kot and Weiss [18] developed a dislocation based 
model and derived an equation similar to equation 
(l), except that the yield stress is replaced by the in- 
ternal stress owing to the transformation. Poirier 
[19] also derived a dislocation based model and 
showed that the result can be reduced to equation 
(1). That model was extended by Gautier et al. [20] 
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Fig. 1. Strain per cycle as a function of applied stress for iron with varying purity. Data by Clinard 
and Sherby [8] are creep corrected. 

to include the kinetics of the phase transformation, 
also showing a linear relationship between plastic 
strain and applied stress. Other authors have trea- 
ted the case of CTE-mismatch superplasticity in a 
similar manner, as reviewed in Ref. [7]. In sum- 
mary, all existing analytical models for low-tem- 
perature phase transformation plasticity predict 
either a linear relationship between t and 0 as 
shown in equation (1) or a non-linear behavior 
using additional assumptions. The derivation by 
Greenwood and Johnson [l] (summarized in the 
Appendix) uses assumptions which limit the validity 
of equation (1) to small strains, i.e. c << AVIV or, 
equivalently, to small applied stresses, i.e. 0 += cry. 

Greenwood and Johnson’s model was tested ex- 
perimentally by many investigators for allotropic 
metals such as iron [l, 8810, 131, cobalt [l, 211, 
uranium [l], titanium [l, 11, 121, and zirconium [l]. 
The first three of these metals are most appropriate 
for comparison to equation (l), as creep is slow at 
their transformation temperatures and the assump- 
tion of ideal plasticity is thus accurate. Figure 1 
shows literature results reported by Greenwood and 
Johnson [l], Clinard and Sherby [8], de Jong and 
Rathenau [9] and Zwigl and Dunand [lo] for trans- 
formation superplasticity of iron containing little or 
no alloying elements. In that figure, Aetot is defined 
as the strain per full thermal cycle, i.e. cc-y-cl. As 
discussed later, the scatter between the experimental 
curves in Fig. 1 can be attributed to varying impur- 
ity and carbon contents in the samples investigated. 
In general, linear relationships are observed at 
small strains or stresses, in qualitative agreement 

higher strains or stresses a considerable deviation 
from linearity occurs. This effect could be attributed 
either to the transition from time-independent to 
time-dependent material behavior (i.e. creep) or to 
the breakdown of equation (1) at high stresses. 
Since creep is insignificant in the above experiments 
[l, 8-101, the non-linear behavior in Fig. 1 is an 
intrinsic behavior which cannot be modeled with 
the existing linear theories. 

In the present paper, we model internal stress 
superplasticity of an ideal plastic material exhibiting 
high strains per transformation by extending 
Greenwood and Johnson’s theory to applied stres- 
ses up to the yield stress without further assump- 
tions. We then compare the model predictions to 
literature values that show non-linear transform- 
ation superplastic behavior, e.g. iron. Furthermore, 
we apply our model to superplasticity induced by 
other internal stress mechanisms, i.e. anisotropic 
thermal expansion mismatch and composite thermal 
expansion mismatch. 

2. ANALYTICAL MODEL 

As summarized in the Appendix, equation (1) 
was derived under the assumption that the plastic 
strain increment 6 is much smaller than the trans- 
formation volumetric mismatch AVjV, i.e. for small 
applied stresses. But if the plastic strain becomes 
comparable to, or even larger than the volumetric 
mismatch, the non-linear terms ignored by 
Greenwood and Johnson [l] in their derivation (see 
Appendix) cannot be neglected and equation (1) is 

with the predictions of equation (1). However, at invalid. 
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We first define dimensionless stresses and strains: 

CI :=c/(AV/ V ) (2) 

B :=o :Jw (3) 

Y :=(AVlVMAV/V) (4) 
6 :=iT/uy (5) 

where ofzZ and (A Vi v),, are defined in the 
Appendix. With these definitions, equation (A15) is 
rewritten as: 

-112 

(6) 

Rather than expanding terms and linearizing the 
resulting expression as done by Greenwood and 
Johnson (see Appendix), we determine the volume 
average over both sides of equation (6) and use 
equations (3), (5) and (A17) to get: 

6= 
(3/2)&@-y)(l +$a2 -$+“‘dQ 

f, dQ 
(7) 

where R is a spherical volume element. With (A V/ 
v),, given by equations (A7)-(AlO), the right hand 
side of equation (7) is solved analytically, giving: 

s,‘+i+ 
4 6u j&(%%i) 

x ln 
(8) 

equation (8) is obtained without the assumption of 

small strain (t < AV/V) and is thus valid for all 
applied stresses below the yield stress, unlike 
Greenwood and Johnson’s original solution 
[equation (l)], expressed in dimensionless form as: 

Figure 2 shows the solution derived by Greenwood 
and Johnson [equation (9)] together with the exact 
solution given by equation (8). 

This figure shows the following characteristics: 

Despite its complexity, the exact solution 
[equation (S)] is almost linear for 0 < 6 < 0.5 
and follows closely the approximate linear sol- 
ution by Greenwood and Johnson [equation (9)]. 
Surprisingly, Greenwood and Johnson’s solution 
[equation (9)] coincides far beyond its nominal 
range of validity (i.e. a < 1) with the exact sol- 
ution [equation (8)]. This fortuitous agreement 
results from the quasi-linear nature of equation 
(8) up to GI x 0.4. 
The value of 6 given by equation (8) and its slope 
at the origin are, respectively: 

liliO 6 = 0 (10) 

(11) 

as determined by series expansion. As expected, 
these values correspond to those predicted by 
Greenwood and Johnson [equation (9)]. 

2 
- Exact solution (Es. 8) 

-. - -. -. . Linear approximation (Es. 9) 

1.5 - 

0 I I I I 
0 0.2 0.4 0.6 0.8 

Fig. 2. Dimensionless transformation strain as a function of dimensionless applied stress as 
predicted by equation (8) (exact solution) and equation (9) (approximate solution by Greenwood and 

Johnson [ 11). 
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7.8 MPa 1 

Fig. 3. Total strain per cycle as a function of applied stress. Literature values (symbols) are compared 
to model prediction [line, equation (S)] with (TV as a parameter given in the figure. 

??The strains predicted by equation (8) diverge 
towards values larger than those extrapolated 
from equation (9) when the applied stress 
approaches the yield stress. As expected for a per- 
fectly plastic material, the strain becomes infinite 
when the applied stress tends to the yield stress: 

lim 6 = 1. 
oL-+m (12) 

This equation was proved by using L’Hospital rule. 

3. DISCUSSION 

While the above solution [equation (8)] is the 
same as that found by Fischer [15], equation (8) is 
based only on the original assumptions made by 
Greenwood and Johnson and does not necessitate 
any further hypothesis. Thus, the radial strain com- 
ponents introduced by Mitter [14] and Fischer [15] 
do not affect the final result. 

3.1. Transformation superplasticity 

Figure 3 shows the total strain per cycle as a 
function of the applied stress for experimental lit- 
erature data of iron, together with predictions by 
equation (8). Fitting was done by keeping the volu- 
metric mismatch constant at A V/V = 1.05% [22], 
while changing the yield stress systematically until 
the sum of the squared differences between the 
applied and calculated stress was minimum: 

(13) 

where n is the number of points measured. In Fig. 3, 
we assume that the strain of a full cc-y-a transform- 
ation cycle is the sum of two equal half-cycle contri- 
butions (a-y and y-cc, respectively): 

Attot = 2t. (14) 

As shown in Fig. 3, there is good agreement 
between experiment and model for the data by 
Greenwood and Johnson [l] with a yield stress 
c+= 7.4 MPa and the data by Clinard and Sherby 
[8] with oy= 7.8 MPa. However, the data of de 
Jong and Rathenau [9] and Zwigl and Dunand [lo] 
cannot be fitted with the single parameter cv 
[equation (13)]. This is because in equation (8) the 
yield stress affects not only the non-linear behavior 
of the t-o curve but also the value of the slope in 
the linear region. Fitting only the data in the linear 
range gives yield stresses of 16 MPa and 11 MPa 
for the data by de Jong and Rathenau [9] and 
Zwigl and Dunand [lo], respectively. In Fig. 3, the 
predicted curves, however, diverge at stress values 
that are too low; this behavior is attributed to 
strain hardening, as discussed in the following. 

Table 1 summarizes the chemical composition of 
samples used by the different investigators and 
shows that the yield stress, oy, as determined from 
fitting of the experimental data, tends to increase 
with decreasing overall purity. Furthermore, the 
impurity content also affects the post-yield beha- 
vior. The higher purity data by Greenwood and 
Johnson [l] and by Clinard and Sherby [8] can 
accurately be described as ideally plastic (Fig. 3), a 
central assumption of the models. However, 
samples used by de Jong and Rathenau [9] and 
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Table I. Chemical composition and material parameters for the yield stress given by equation (15) for iron 

Purity (wt%) Main impurity (wt%) 0~ (MPa) k Q (MM Reference 

-100 -0 1.4 0 0 Greenwood and Johnson [l] 
99.1 0.02 c 7.8 0 0 Clinard and Sherby [8] 
99.1 0.3 0 11 0.51 5.5 Zwigl and Dunand [IO] 
-99.8 0.2 c 16 0.41 8 de Jane and Rathenau 191 

Zwigl and Dunand [lo] contained 0.2% carbon and 
0.3% oxygen, respectively. These impurity levels are 
much higher than their solubility limits, so that the 
resulting iron carbides and oxides, are likely to 
affect the plastic behavior of the matrix by increas- 
ing both the yield stress and the post-yield strain- 
hardening rate. Strain hardening results in yield 
stresses CT; after plastic deformation that are higher 
than the initial yield stress (TV. This behavior can be 
modeled with a simple stress criterion: 

fJ; = 1 OY for 0~ crf 
0~ +k(a - at) for 02o, (15) 

where ct is a threshold stress and k is a parameter 
controlling the hardening rate. Table 1 shows these 
optimized parameters with the threshold stress, otr 
set as half the initial yield stress, ran, determined 
from equation (13) and shown in Fig. 3. 
equation (15) thus only contains two fitting par- 
ameters, i.e. gy and k. With gv given by the fitting 
in the linear range, k is obtained by fulfilling the 
condition: 

ergi - o;6i]2Lmin for cr>ot. (16) 
i=l 

Optimal values for k are given in Table 1. 

The validity of the analytical model [equation (S)] 
with and without strain hardening is tested by plot- 
ting the normalized stress 6 [with gy given by 
equation (15) and parameters taken from Table l] 
vs the normalized strain CI [with t given by equation 
(14)]. The result is shown in Fig. 4 together with 
the prediction of equation (8). Given the uncertain- 
ties of the purities of the materials and differences 
in the cycling parameters, i.e. frequencies and tem- 
perature amplitudes, the model is in good agree- 
ment with the experimental observations. 

3.2. CTE-mismatch superplasticity 

equation (8) can be adapted to describe super- 
plasticity resulting from other mismatch mechan- 
isms, e.g. martensititic phase transformations 
[23,24], irradiation swelling [25], compressibility 
mismatch [26] and CTE-mismatch [7]. The latter 
mechanism is discussed in the following, first for 
pure metals with anisotropic CTE, and second for 
metal matrix composites with inhomogeneous CTE. 

The treatment developed by Greenwood and 
Johnson [l] can be generalized to describe mismatch 
superplasticity by replacing the phase transform- 
ation strain tensor cf [equation (A6)] with a gen- 
eral mismatch strain tensor #. The internal strains 
[equation (A4)] then become: 

0 Greenwood & Johnson [l] 

Cl Clinard & Sherhy [8] 

5 - A De Jong & Rathenau [9] 

0 Zwigl & Dunand [IO] 

4- 

0 0.2 0.4 d 0.6 0.8 

Fig. 4. Total strain per cycle normalized by the transformation mismatch strain as a function of applied 
stress normalized by the yield stress (symbols). Theoretical solution [equation (S)] is given by the line. 
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q=t;+ty. (17) 

From the strain invariants, defined by the principal 
axes of the tf: tensor [27], it follows that: 

(18) 

where (A V/V& is the equivalent mismatch strain 
producing the internal stresses. Once the equivalent 
mismatch strain is specified, the derivation follows 
that of the phase transformation plasticity presented 
in the Appendix, using equation (17) instead of 
equation (A4). The final result is again equation (8) 
where M. is now defined as c/(AV/V)eq. 

The equivalent mismatch produced by the CTE- 
mismatch mechanisms is of the general form: 

where G (f) describes the dependence of the volume 
fraction for the case of composite CTE-mismatch 
(G = 1 for a single phase anisotropic material), Act 
is the thermal expansion mismatch between the 
composite phases (respectively, between crystallo- 
graphic directions) and AT,, is the temperature 
interval which causes plasticity beyond the elastic 
regime. A TPl, which is smaller than the total tem- 
perature amplitude AT, is a function of the CTE- 
difference, the elastic modulus and the yield stress 
of the weaker phase. Because these properties are 

IS 

I. 

s 

8 
d” 

0.5 

temperature dependent, different values for ATPi 
and thus (AV/Qq are expected for heating and 
cooling half-cycles, resulting in different values of 
half-cycle plastic strains t. While it is possible to 
use equation (8) separately for heating and cooling 
half-cycles, the model can also be used with cycle- 
averaged values for the yield stress and AT,,, thus 
assuming equal contributions for the plastic strains 
caused by heating and cooling. This approximate 
approach must be followed when analyzing strain 
data reported only for complete temperature cycles. 
In this case, equation (19) can be simplified: 

AV 

( > -F eq 
= K G( f )Ac( ATrI (20) 

where K is a parameter correcting for the errors 
introduced by taking cycle-average values for the 
thermal mismatch AcrAT,t. Thus, the closer K is to -- 
unity the better the assumptions made for AaAT,t 
are. 

3.2.1. Anisotropic CTE-mismatch superplasticity in 
pure metals. Internal stress superplasticity can be 
induced upon thermal cycling of a polycrystalline 
material with anisotropic CTE, as reported for CI- 
uranium [3,4] and zinc [2,3]. Following the deri- 
vation of Young et al. [28], the strain deviators of 
an anisotropic material in a Cartesian coordinate 
system, c$,~, are: 

P - x = KI AT,I ((~1 - oav) (21) 

?? - 
Y = KI AT,I (~2 - ~1 (22) 

0 nl (wrought) Pickard & Derby [2] 
0 

0 Zn (annealed) Pickard & Derby [2] 

0 u-U Lobb et al. [4] 

Fig. 5. Total strain per cycle as a function of applied stress for anisotropic CTE-mismatch superplasti- 
city of cc-uranium [4] and zinc [2] (symbols) compared to model predictions by equation (8) (line) using 

parameters given in Table 2. 
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Table 2. Summary of material parameters used in CTE-mismatch superplasticity models 

Material w (MPa) (AVIV), (%) 

U-U 36.0 0.27 
Zn (wrought) 26.5 0.090 
Zn (annealed) 9.5 0.070 
2124 Al/ZOSiC, 47.5 0.019 
Pure AI/ZOSiC, 26.0 0.082 
Pure A1/30SiC, 26.5 0.063 

KI [equation (27)] 

0.24 
0.21 
0.17 

K2 [equation (31)] Reference 

Lobb et al. [4] 
Pickard and Derby [2] 
Pickard and Derby [2] 

0.46 Chen et al. [6] 
2.7 Pickard and Derby [5] 
1.6 Pickard and Derby [5] 

EM z = KI AT,, (a3 - aa,) (23) 

where c(~, ~2, x3 are the CTEs along the crystallo- 
graphic directions (which are, in general, tempera- 
ture dependent), aav =$cll + a2 + c(~) is the average 
CTE of an aggregate of randomly oriented grains 
and K1 is the correction parameter. 

Equations (21)-(23) are equivalent to equations 
(A7)-(A9), given by Greenwood and Johnson [l] 
for transformation superplasticity. For the special 
cases of a-uranium and zinc, cclz~2#a3 [29], so that 
equations (21H23) become: 

-- 
t,” = (1/3)K, Au, ATpI 

cy = (1/3)Kl overlineAu, ATpl 

6,” = (-2/3)K1 Act, AT,, 

(24) 

(25) 

(26) 

where Au, is the temperature-averaged difference 
between CI, and c(~. When comparing equations 
(24H26) to equations (A7)-(A9), the equivalent 
mismatch for the case of anisotropic CTE-mismatch 
plasticity is: 

AV -- c-1 V 
= K,Aa, AT,,. 

eq 
(27) 

The parameter K, can be found with equation (27) 
from the experimental values for AT,,, the average 
CTE, Aclmr and the equivalent mismatch (AV/V),, 
determined by fitting equation (8) to the data with 
the algorithm given in equation (13). The squared 
residuals are minimized iteratively by keeping gy 
constant while locating the minimum for a, through 
changes in (A V/V)eq and vice versa until conver- 

- 
gence. If ATpl 1s unknown, the total cycle amplitude 
AT can be used as an upper bound for AT,,, 
thereby neglecting elastic strains. Figure 5 shows lit- 
erature data for cc-uranium [4] and zinc [2] together 
with model predictions by equation (8) fitted with 
the parameters given in Table 2. Our model 
[equation (8)] successfully describes both the linear 
and the non-linear region of experimental data and 
gives two fitted parameters, uy and (A V/V&, that 
are discussed in the following. 

Lobb et al. [4] showed that the strain rates of c(- 
uranium cycled between 400°C and 600°C (T/ 

20 30 40 50 

0 NW 
Fig. 6. Total strain per cycle as a function of applied stress for composite CTE-mismatch superplasticity 
of Al/Sic composites [5,6] (symbols) compared to model predictions by equation (8) (line) using par- 

ameters given in Table 2. 
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T, = 0.48-0.62) are significantly higher compared to 
the rates of isothermal creep at 600°C. Thus, plastic 
accommodation is by time-independent yield rather 
than by creep and the present model is applicable. 
With an average CTE-mismatch of 
Aa,=55.2 x 1O-6 K-’ between 400°C and 600°C 
[29] and a temperature amplitude AT = 200K (an 
upper bound for ATrt), a maximum mismatch of 
Acr, AT = 1.1% is calculated, giving a reasonable 
value of 0.24 for the parameter KI. The value 
obtained for the yield stress (a~=36 MPa) is also 
reasonable in view of the yield stresses reported at 
400°C (CTY = 120 MPa) and at 600°C (0~ = 20 MPa) 

1301. 
The zinc data shown in Fig. 5 was measured by 

Pickard and Derby [2] on high-purity wrought zinc 
and the same material after annealing at 350°C. 
Temperature cycles were between 60°C and 150°C 
(T/T,= 0.48-0.61) and at all temperatures the 
strain rates caused by thermal cycling are signifi- 
cantly higher than the isothermal creep rates calcu- 
lated from Ref. [31]. The fitted average yield stress 
of the wrought material is 26.5 MPa, below the 
room temperature value of 33 MPa measured by 
Pickard and Derby [2], as expected from the nega- 
tive temperature dependence of the yield stress. The 
annealed zinc is best fitted with a yield stress of 9.5 
MPa. This value is much lower than that for the 
wrought material (26.5 MPa), as expected from 
recovery and recrystallization after annealing at a 
very high homologous temperature ( T/Tm = 0.90). 
With Au, =46.8 x 10e6 K-’ [29], the maximum 
available mismatch is Act, AT = 0.42%, leading to 
values for K1 of 0.21 and 0.17, which are similar to 
that of a-uranium (K, =0.24). The similarity in the 
values of K,, while possibly fortuitous, is encoura- 
ging. 

3.2.2. Composite CTE-mismatch superplasticity. 
Composites containing phases with different CTEs 
also exhibit mismatch superplasticity [7]. At low 
homologous temperatures where yield is the con- 
trolling deformation mechanism, the present model 
[equation (8)] can be used by fitting the yield stress 
and the equivalent volumetric mismatch. For CTE- 
mismatch superplasticity in composites, the strain 
deviators are: 

_- 
c,” = K2G(f) ha AT,1 (28) 

_- 
eM = K*G(f) ha ATr, 

Y (29) 

EM - z - - 2K2G(f) Acr ATPI (30) 
- 

where Acr is the temperature-averaged linear mis- 
match between the CTEs of reinforcement and 
matrix, AT,,l, the temperature difference causing 
plastic deformation, Gy> a function of the re- 
inforcement volume fraction f and K2 the correction 
parameter incorporating the non-ideality of the 
assumptions made above. Comparing equations 
(28)-(30) to equations (A7)-(A9), the equivalent 
mismatch for composite CTE-mismatch super- 

plasticity becomes: 

= 3G(f )K2 Acr ATpI. (31) 
eq 

Figure 6 shows the data and fits for Al/Sic metal 
matrix composites from Chen et al. [6] and Pickard 
and Derby [5]. Chen et al. [6] cycled a 2124 Al com- 
posite containing 20 vol.% SIC whiskers between 
100°C and 350°C (T/T,=O.40-0.67) and showed 
that the strain rates caused by thermal cycling are 
more than an order of magnitude higher than iso- 
thermal creep at a homologous temperature of 0.69. 
Pickard and Derby [5] used composites containing 
20 vol.% and 30 vol.% 2.3 pm SIC particles with a 
matrix of commercially pure aluminum, for which 
plasticity by creep was also insignificant over the 
cycling temperature range between 130°C and 
350°C (T/Tm = 0.43-0.67). Thus the composite 
behavior upon thermal cycling is controlled by 
time-independent yield and can be described by 
equation (8) with (dV/V),, given by equation (31). 
The fitted values for by and (d V/V)eq are given in 
Table 2. 

Table 2 shows that the yield stress is significantly 
higher for the composite with an alloyed 2124 
matrix than for the pure aluminum composite. This 
effect is expected both because the alloy is stronger 
than the pure metal and because whiskers typically 
strain harden a metallic matrix more effectively 
than particles. Also, Pickard and Derby [5] 
measured the yield stress of the commercially pure 
aluminum matrix as a function of the temperature, 
giving a cycle-averaged yield stress of 20.5 MPa, in 
reasonable agreement with our fitted values of 26 
MPa for the 20 vol.% Sic, composite and 26.5 
MPa for the 30 vol.% SIC,. 

The dependence of the volume fraction was mod- 
eled by Pickard and Derby [5] as G(j) = (1 -flJ 
Furthermore, they independently measured the tem- 
perature amplitude AT,, for the onset of plasticity. 
By taking AG~~ =22.7 x lo@ K-’ [29] and an aver- 
age value for heating and cooling AT,, = 137 K (i.e. 
AT,,1 =AT-AT,, =83 K), the mismatch strains are -- 
3G (f> A.am ATpi > =0.030% and 0.040% for the 
20 vol.% and 30 vol.% Sic, composite, respect- 
ively. Using the fitted values for (A V/Qq given in 
Table 2, K2 values of 2.7 and 1.6, respectively, are 
obtained from equation (31). Assuming the same 
value for AT,,= 137 K, the mismatch strain of the 
2124 Al composite becomes 0.041% and K2 =0.46. 
While K2 values are similar for the two pure alumi- 
num composites, the value for K2 for the alloyed 
composite is significantly lower, possibly because (i) 
the yield stress of the 2124 alloy is much higher 
than for pure aluminum, thus increasing AT,,, and 
(ii) whiskers produce a mismatch stress field differ- 
ent from that of equiaxed particles. 

In general, the values for the correcting par- 
ameters K1 and K2 determined for anisotropic CTE- 
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mismatch and composite mismatch superplasticity 
are, respectively, within factors of 6 and 3 of the 
predicted ideal value of unity. We believe that this 
error can be explained by the assumptions and ap- 
proximations made for the equivalent mismatch 
[equation (20)]. 

4. CONCLUSIONS 

Allotropic materials deforming by transformation 
superplasticity exhibit at low applied stresses a lin- 
ear relationship between plastic strain per trans- 
formation and the applied stress, as predicted by 
the linear relationship of Greenwood and Johnson 
[l]. However, at intermediate and high applied 
stresses, where their theory becomes invalid, exper- 
imental data show that the strain increases non-line- 
arly with the applied stress. We generalize the 
original theory of Greenwood and Johnson [l] to 
include these stress regimes and derive a closed- 
form solution valid for all applied stresses (from 
zero up to the yield stress of the weaker phase) for 
an ideally plastic material. As expected, the strains 
predicted by the complete solution converge to the 
linear expression by Greenwood and Johnson [l] at 
low stresses and diverge to infinity for stresses tend- 
ing towards the yield stress. The complete solution 
accurately describes data for high-purity iron in 
both these linear and non-linear regions. The model 
is then extended to the case of a strain-hardening 
material and applied successfully to literature data 
for iron with high impurity content. Finally, the 
model is adapted to the more complex case of 
CTE-mismatch superplasticity exhibited by metals 
with anisotropic CTE and by composites with in- 
homogeneous CTE. Experimental literature data on 
a-uranium, zinc and AllSiC composites are success- 
fully described with two fitting parameters (yield 
stress and thermal mismatch) which take values 
that are physically reasonable. 
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APPENDIX A: SUMMARY OF THE DERIVATION BY 
GREENWOOD AND JOHNSON [l] 

Phase transformation superplasticity is attributed to the 
presence of deviatoric stresses oii = CT-( 1/3)+skk where oi, 
are the StreSS tensor COmpOnentS, okk its hydrostatic com- 
ponents and 6, the Kronecker symbol. The kinetics of 
strain production is modeled as 

iu = a:,/% (Al) 

where iy are the internal strain rate components and l/1 is 
the viscosity of the weaker phase once the yield stress is 
reached. Assuming that the rate of production of the in- 
ternal stress is fast compared to any possible relaxation 
mechanism, equation (Al) can be integrated over the time 
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of transformation At to give: 

Eq = cr& (A2) 

where Ii =,?A? is a constant. The internal strain com- 
ponents Q are only a function of the deviatoric stress com- 
ponents. Substituting equation (A2) into the Levy-von 
Mises yield criterion (which relates the deviatoric stress 
components to the yield stress, ey, as measured in uniaxial 
tension) gives: 

The internal strains are obtained by superimposing the 
strains owing to plastic deformation of the weaker phase, 
cc, and the strains associated with the phase transform- 
ation, t;T: 

P T 
'q = ti/ +Eil (A4) 

with 

(A VI V Lx (A VI V Ly (A VI V 1, 
6; = - (AVIV), (A VI V ),av (A V/ V )zy (A VI V 1x2 (A VI V )zv @VI V I,, 1 646) 

where c is the plastic strain increment in the direction of 
the uniaxial applied stress and (A V/Q the components 
of the phase transformation strain tensor. The negative 
sign in equation (A6) indicates that a volume reduction 
occurs during the phase transformation. Greenwood and 
Johnson [1] followed Anderson and Bishop [32] by assum- 
ing that the strain deviators (A V/V),,y,z in principal coor- 
dinates are: 

@V/V ), = (1/3)(AV/V) (A7) 

@V/V), =(1/3WV/V) W) 

(AV/ V ), = (-2/3)(A V/ V ). (A9) 

The components of the transformation strain tensor 
[equation (A6)] are related to the principal strain deviators 
[equations (A7)-(A9)] by a coordinate transformation, e.g. 

(AV/V ),, = (AVIV ), cost sin(9)2 

+ (AV/V )y sin(cp)2 sin(9)2 + (AV/V ), COST. 

(AlO) 

Using equations (A7)-(A9) and equation (AlO), the sec- 
ond invariant of the transformation tensor [equation (A6)] 
is 

(A VI V ):x+(A Vl V $ + (A VI V ):, + 2[(A Vl V )$ 

+(AV/V&+(AV/V$] =;($)2 

(Al 1) 
Further, the first invariant of the phase transformation 

strain tensor requires that: 

(AV/V),,+(AV/V),+(AV/V),z=O. (A12) 

Introducing equation (A4) into equation (A3) and using 
equations (Al 1) and (A12) gives: 

(3/2)t2 - 3t(AV/ V ), + (2/3)(A V/ V )2 = (2/3)1;(r$. 

(A13) 

Compatibility of strains in the z-direction (i.e. the direc- 
tion of the uniaxial applied stress) requires that 

~,,k-(AV/V),,. W4) 

After introducing equations (A2) and (A14) into equation 
(Al3), eliminating 1, and rearranging terms, the deviatoric 
stress component in the z-direction is given by 

ff:: = 
0~16 -@v/v ),,I 

1 1 
l/2 (‘415) 

(AVIV) 1 +4c$yj2 -w 

This is equation (7) of Greenwood and Johnson’s article 
[l]. Under the assumption that t-=zAV/V, these authors 
make three approximations by: 

??neglecting the t* term in the denominator of equation 
(Al5), 

??expanding (1 - x)-l’* % 1 + x/2 where 

x= 9c(A VI V ), 
2(A V/ V )2 

??neglecting again the t2 term 

to obtain 

uh_o’[+ -m) -WL] 
(AVIV) (‘416) 

To get macroscopic values for stress and strain, an aver- 
age over a spherical volume element Q, integrated over 
9, rpc[O;rr/2], is now applied to equation (A16). Individual 
integrals give: 

6417) 

where e is the applied stress 
Introducing equations (A17)-(A19) 
leads to the concise result found 
Johnson [l]: 

5AV CT 

t-6VC7y. 

6419) 

in the z-direction. 
into equation (A16) 
by Greenwood and 

(A20) 


