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Transformation Superplasticity of Zirconium

PETER ZWIGL and DAVID C. DUNAND

A tensile strain of 270 pct was achieved for coarse-grained zirconium subjected to transformation
superplasticity conditions, where strain increments are accumulated upon repeated thermal cycling
around the allotropic transformation temperature under the biasing effect of a uniaxial tensile stress.
The strain increment per cycle was found to consist of two equal contributions from transformations
on heating and cooling and to increase linearly with the applied stress. The measured strain incre-
ments are in good quantitative agreement with predictions based on the average internal stress during
the transformation, which was determined independently from experimental transformation times. As
the cycling frequency is raised, the average strain rate increases (a maximum value of 1.3 z 1024 s21

was measured), but the strain increment per cycle decreases above a critical cycling frequency, for
which the sample gage section undergoes only a partial phase transformation. The resulting reduction
in internal mismatch and increase in internal stress are modeled using the experimental observation
that b-Zr deforms by a mixture of diffusional and dislocation creep in the stress range of interest.

I. INTRODUCTION

Superplastic deformation is characterized phenomeno-
logically by tensile failure strains above 100 pct and can
be classified into two mechanism types: fine-structure su-
perplasticity and internal-stress superplasticity.[1] The for-
mer type of superplasticity relies on grain-boundary sliding
and is operative in metals with grains smaller than 10 mm,
which must be stable at the temperature of deformation.
This can be achieved through duplex microstructures or
through grain-boundary pinning by fine second-phase par-
ticles.[1] Since pure metals display neither duplex structures
nor grain-boundary pinning, they exhibit rapid grain growth
at elevated temperatures and are, thus, typically incapable
of fine-structure superplasticity. However, certain pure met-
als can deform superplastically by the second mechanism
(internal-stress superplasticity), where internal mismatch
stresses are biased by an external stress, resulting in a strain
increment. These mismatch stresses and the resulting strain
increments can be repeatedly produced by thermal cycling
of pure metals exhibiting coefficients of thermal expansion
anisotropy[1,2] (e.g., Zn,[3,4,5] and U[3,4,6]) and/or an allotropic
phase transformation[1,7] (e.g., Fe,[8,9,10] Co,[8,11] Ti,[8,12] Zr,[8,13]

and U[8]). Since the only requirement for internal-stress su-
perplasticity is the repeated creation of internal mismatch
stresses, these pure metals can be deformed superplastically
by this alternate mechanism independently of their grain
size.

In transformation superplasticity, internal mismatch
stresses are produced by the volumetric difference between
the two allotropic phases |DV/V| (referred to as DV/V in this
article). A net plastic strain increment is produced in the
direction of the applied stress after each phase transfor-
mation as a result of the accommodation of these internal
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mismatch stresses by the weaker allotropic phase, which
can deform either by time-independent plastic yield or by
a time-dependent creep mechanism such as dislocation
creep or diffusional creep. Transformation superplasticity
was systematically investigated first by Greenwood and
Johnson,[8] who developed a model predicting a linear re-
lationship between the applied stress (s) and the plastic
strain increment per transformation (Dε),

2 DV s 5 z n
D« ' z z z [1]

3 V s (4 z n 1 1)0

where s0 is the average internal stress (averaged over both
transformation time and spatial orientation of the phase
transformation) of the plastically deforming weaker phase,
and n is the stress exponent of the creep law describing the
plastic accommodation. Greenwood and Johnson[8] also
considered the case of ideal plastic yielding at low homol-
ogous temperatures, which can be described with Eq. [1]
by replacing s0 by the yield stress (sY) of the weaker phase
and by letting n tend to infinity.

Equation [1], which is only valid for small applied
stresses, was later extended analytically14,15 to high applied
stresses, where a nonlinear stress-strain behavior is pre-
dicted for plastically yielding materials (e.g., Fe, Co, and
Ua/b). Similarly, Mitter16 gives a numerical solutions for the
nonlinear case of high applied stresses for materials de-
forming by yield and by creep (e.g., Ti, Zr, and Ub/g).

As seen from Eq. [1], low values for the yield stress or
the internal stress result in large strain increments. Thus,
phase transformations occurring at high homologous tem-
peratures, where the material is weak, are most suitable for
deformation by transformation superplasticity. However,
high cycling temperatures also promote creep outside the
transformation range, so that experimentally measured plas-
tic strain accumulated after a full cycle often includes ap-
preciable amounts of creep strain unrelated to the superplas-
tic strain increment. Creep is furthermore undesirable,
because it promotes cavitation and neck instability, which
reduce the total strain to failure. Thus, the observation of
transformation superplasticity (large elongation to fracture
and linear dependence between applied stress and strain in-
crement5. [1]) depends sensitively on suppressing creep
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Table I. Sample Chemical Composition (Parts per Million)

C H N O

As-received ,20 4 ,20 340
After thermal cycling 42 150 40 360

outsidethe transformation range, which can be achieved by
optimizing the temperature cycle profile and the sample ge-
ometry.

In the present article, we investigate transformation su-
perplasticity in pure zirconium, which was chosen for the
following three reasons. First, to our knowledge, only two
studies[8,13] exist on the transformation plasticity of zirco-
nium. Second, these studies did not report values for failure
strains, a necessary condition for demonstrating transfor-
mation superplasticity. Third, zirconium shows an allo-
tropic phase transformation at Ta/b 5 863 7C (Ta/b/Tm 5
0.53),[17] where creep is the dominant deformation mecha-
nism.[18] Thus, zirconium can be used to test the numerical
predictions of Mitter[16] for a creeping material transforming
under high applied stresses. As described previously, this
can only be achieved if creep outside the phase transfor-
mation range is minimized, a condition we fulfill by mod-
ifying the usual geometry for superplastic samples.
Furthermore, we use measured thermal characteristics dur-
ing the phase transformation to calculate the average inter-
nal stress, which is compared to predictions from mechan-
ical models.

II. EXPERIMENTAL PROCEDURES

The material used was unalloyed zirconium (Zircadyne
702 from Wah Chang, Albany, OR) with an extra-low ox-
ygen content (Table I). A flat tensile sample was machined
with its gage length parallel to the rolling direction. Be-
cause the sample heads (length: 28.1 mm, width: 14.0 mm,
thickness: 4.44 mm, hole diameter: 5.07 mm) were much
larger than its gage section (length: 19.85 mm, width: 5.10
mm, thickness: 4.44 mm), only 12 pct of the total sample
volume was in the gage section.

Thermal cycling and isothermal creep experiments were
conducted under small uniaxial tensile stresses in a custom-
designed apparatus (Figure 1). Rapid heating was achieved
by using four symmetrically-arranged radiant heaters, with
a total nominal power of 8 kW, concentrated on a focal line
280 mm in length. The temperature was controlled at the
sample surface (point A in Figure 1(b) and (c)) and mon-
itored at the head of the sample (point B in Figures 1(b)
and (c)) with INCONEL*-shielded, boron-nitride coated,

*INCONEL is a trademark of INCO Alloys International, Inc.,
Huntingtona, WV.

grounded K-type thermocouples, with a small diameter of
1.6 mm, to minimize the response time. Both thermocou-
ples were subjected to (1) a radiative heat flux to, and from,
the sample surface and the heaters; (2) a conductive heat
flux through the sample; and (3) a convective heat flux
caused by the inert gas. For isothermal conditions, where
these heat fluxes are at steady state, the temperatures mea-
sured corresponded to the internal sample temperature.
However, under transient conditions, i.e., temperature cy-
cling, the thermocouples measured a combination of surface
temperature and surrounding temperature. The thermocou-
ple B, positioned at the sample head, was farther from the
focal line of the heaters and, thus, experienced a lower heat
flux density than the controlling thermocouple A located at
the sample surface.

Square-wave temperature profiles were applied at the

sample surface with temperatures at the tip of thermocouple
A (TA) between TA 5 810 7C and 940 7C and cycling fre-
quencies (n) between n 5 6 and 30 h21. A special feature
of the experiments was that only the gage section was fully
exposed to the radiative heat flux, whereas the sample heads
were largely shielded from the radiation (Figure 1(b)). Alu-
mina pins and spacers (Figure 1(c)), as well as low-con-
ductivity INCONEL pullheads and pullrods, minimized
heat transfer through the sample heads, so that sample cool-
ing was mainly controlled by radiation from the surface of
the gage section. The sample was surrounded by a quartz
tube flushed with purified argon, produced by flowing
99.999 pct pure argon through a titanium powder bed held
at a temperature of 1000 7C. The sample stress was adjusted
manually by applying weights to the pullrod. The force
from the spring bellow (Figure 1(a)) compensated the stress
increase due to the sample cross-sectional reduction, so that
constant stress conditions were maintained over a defined
deformation range.

The deformation, which was measured by a linear-volt-
age displacement transducer placed at the cold end of the
lower pullrod, included the thermal dilatation of the whole
load train and, therefore, did not represent the sample de-
formation under transient temperature conditions. However,
the plastic deformation measured under steady-state con-
ditions and over full-temperature-cycle periods was only
due to the sample plastic deformation.

The same sample was subjected to both isothermal creep
and thermal cycling under stress in an experiment consist-
ing of five successive parts. In the first part, the sample was
heated to 810 7C under a low stress (0.3 MPa) until the
deformation rate of the load train due to thermal expansion
was below the detection limit of the apparatus (d(DD)/dt ,
4 mm z h21). Creep was then measured at 810 7C at different
stress levels between 0.6 and 2.0 MPa and at 910 7C at a
constant stress of 1.0 MPa, allowing enough time to reach
steady state at each stress and temperature. In the second
part of the experiment, the sample was thermally cycled
with a frequency of 10 h21 between the lower cycling tem-
perature (Tl) as measured by thermocouple A Tl 5 810 7C,
and the upper cycling temperature (Tu), Tu 5 910 7C, at
stresses of 0.3 and 1.0 MPa. Steady-state isothermal creep
was established before and after each cycling segment,
which consisted of four to eight individual cycles. In the
third part of the experiment, cycling segments were con-
ducted where the cycling frequency was varied between 6
and 15 h21 at a constant stress of 1.0 MPa and with tem-
perature amplitudes of Tl 5 810 7C and Tu 5 910 7C. These
cycling segments were also preceded and succeeded by iso-
thermal creep measurements at the upper cycling tempera-
ture. The fourth and fifth parts of the experiment consisted
of a series of stress variations at frequencies of n 5 15 and
30 h21, respectively, with Tl 5 810 7C and Tu 5 910 7C to
940 7C. The stress was changed in discrete steps during the
thermal cycling, with eight to twenty cycles measured at
each stress level. The experiment was stopped after 25
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Fig. 1—(a) Schematic of the experimental setup. (b) and (c) Two detailed orthogonal views.

Fig. 2—Isothermal creep rate as a function of the applied stress for a-Zr
at 810 7C and b-Zr at 910 7C.

hours and a total of 212 cycles, because the travel limit of
the apparatus had been reached.

III. RESULTS

Figure 2 shows the isothermal steady-state creep rate of
a-Zr at 810 7C and b-Zr at 910 7C, as measured during the

first and second part of the experiment. The creep behavior
can be described by a power law,

n

A Q sz« 5 z exp 2 z [2]~ ! ~ !T R z T E

where R is the gas constant, Q is the activation energy, E
is the Young’s modulus, and A is a constant. This constant
is obtained by fitting Eq. [2] to the experimental data using
literature values[18] for Qa 5 190 kJ z mole21 and the shear
modulus (converted to Young’s modulus using a Poisson’s
ratio of 0.35[19]), giving A8107C 5 4.9 z 1016 K z s21 and n8107C

5 2.4. At 910 7C, the creep curve shows a gradually in-
creasing stress exponent, so that the data for stresses below
0.6 MPa are best described by a stress exponent n9107C 5
2.9, whereas the data for stresses above 0.8 MPa show n9107C

5 5.0; the pre-exponential factors are A9107C 5 4.6 z 1019 K
z s21 and A9107C 5 1.1 z 1030 K z s21, respectively using Qb

5 184 kJ z mole21.[18]

Figure 3(a) and (b) show the temperature and strain his-
tory upon thermal cycling between Tl 5 810 7C and Tu 5
910 7C, with a thermal cycling frequency of n 5 6 h21 at
a stress of s 5 0.34 MPa, followed by the isothermal strain
history of b-Zr crept immediately after cycling, with the
same stress at the upper cycling temperature, Tu 5 910 7C.
Despite the lower average temperature of the cycling ex-
periments, the average strain rate upon thermal cycling
( 5 3.9 z 1026 s21) is 10 times higher than the isothermalzε cyc

creep rate of b-Zr ( 5 4.0 z 1027 s21).zε 9107C

The strain increment per cycle, Dεtot 5 DD/L (where DD
5 DL is the deformation increment of the sample gage for
a full cycle and L is the gage length at the beginning of
the cycle) is shown in Figure 4 as a function of the applied
stress for cycles with Tl 5 810 7C, Tu 5 910 to 940 7C,
and n 5 6 to 30 h21. Cycling data measured when the
sample strain was under 56 pct are not given in Figure 4
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Fig. 3—(a) Temperature and (b) strain as a function of time for cycling
between T1 5 810 7C and Tu 5 910 7C with v 5 6 h21 under constant
stress s 5 0.34 MPa. Isothermal creep at Tu 5 910 7C followed the
cycling segment. (c) Single thermal cycle.

Fig. 5—Deformation D and temperature TB as a function of time for
heating from T1 5 810 7C to Tu 5 910 7C or Tu 5 940 7C at a stress s
5 1.1 MPa. The temperature used in index is TA, the upper cycling
temperature applied at the sample gage section.

Fig. 4—Total strain increment per cycle as a function of the applied stress
for cycles with T1 5 810 7C, Tu 5 910 to 940 7C, and v 5 6 to 30 h21.

because, before that point, the stress-normalized cyclic
strain increments were slowly but systematically decreas-
ing, most probably as a result of grain growth in the sample.
Figure 4 shows that, at frequencies below n 5 30 h21, the
strain increment increases linearly with the applied stress
up to s 5 1.4 MPa, with a slope of d(Dεtot)/ds 5 4.4
GPa21. A linear fit of the data gives an extrapolated strain
value of Dε0 5 0.08 pct when no stress is applied. At s 5
1 MPa, several points measured at frequencies of n 5 6 to
15 h21 overlap. Upon cycling with a high frequency of n
5 30 h21, smaller strain increments are observed, leading
to a slope of d(Dεtot)/ds 5 3.0 GPa21 up to s 5 2.9 MPa,
after which a significantly higher strain increment, Dεtot 5
1.6 pct, is obtained for the maximum stress of 3.4 MPa.

The points shown in Figure 4 are averages of four to six
total cycle strain increments. Over multiple cycles, the de-
formation increment showed only a very small standard de-
viation (the reproducibility of the deformation upon thermal
cycling is illustrated in Figure 3(b)). However, the length
of the sample was calculated assuming conservation of the
volume of the gage section without sample head deforma-
tion or necking. The systematic error due to these simpli-
fying assumptions increases with the extent of plastic
deformation and was estimated by comparing the gage
length, calculated as the sum of the deformation increments
(including the deformation of the sample heads), with the
measured gage length of the deformed sample at the end
of the experiment. Accordingly, the uncertainties are 55
pct for the strain and 58 pct for the stress.

Figure 5 depicts the deformation history (D(t)), for an
applied stress of s 5 1.1 MPa, for two heating segments,
as measured with the linear voltage displacement trans-
ducer, and the corresponding temperature (TB(t)), as mea-
sured at the shoulder of the sample head. (Figures 1(b) and
(c)), for upper cycling temperature Tu 5 TA 5 910 7C and
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(a)

(b)

(c) (d)

Fig. 6—Zirconium sample (a) in the undeformed state and (b) at the end of the experiment, after deformation by both transformation superplasticity and
isothermal creep at various stresses. (c) and (d ) Corresponding micrographs of the gage section in the direction of the applied stress.

940 7C. The surface gage section temperature (controlling
thermocouple A) reaches its final value very rapidly (dT/dt
5 10 to 15 K z s21), as shown in Figure 3(a).

Figure 6 shows the sample before the experiment (Figure
6(a)) and after a total engineering of strain e 5 270 pct
(Figure 6(b)) had been accumulated without fracture at the
end of the experiment. The strain accumulated during all
isothermal creep segments was 40 pct (16 pct for the first
part of the experiment and 24 pct for the creep segments
in the other parts), while the strain accumulated during the
cycling superplastic segments was 230 pct. Metallography
of the undeformed sample (Figure 6(c)) revealed equiaxed
grains typical of a cold-worked, recrystallized structure

with a grain size of d 5 19 5 2 mm. The deformed sample
(Figure 6(d)) showed large, coarsened grains (d 5 0.2 to 2
mm), typical of a transformed b structure. Except for hy-
drogen, the concentrations of interstitial elements increased
only a little during the 25-hour experiment (Table I). Hy-
drogen probably originated from traces of water in the ar-
gon gas, decomposing over the titanium bed where oxygen
was preferentially gettered, thus increasing the hydrogen
concentration in the cover gas, which was then absorbed
by the zirconium sample. This slight contamination did not,
however, affect the transformation superplastic behavior
over the course of the experiment; furthermore, hydrogen
can easily be removed from zirconium by a vacuum anneal.
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IV. DISCUSSION

A. Isothermal Creep

Figure 2 shows that the isothermal creep of bcc b-Zr is
significantly faster at 910 7C than for hcp a-Zr at 810 7C,
as is expected from the higher temperature and the more
open bcc structure of b-Zr and in agreement with the de-
formation mechanism map of zirconium by Sargent and
Ashby.[18] However, the stress exponent n9107C 5 5.0, mea-
sured at high stresses for b-Zr, is somewhat higher than the
reported value of n 5 4.3 for power-law creep. This dis-
crepancy may be due to the fact that the latter stress ex-
ponent was not experimentally measured, but assumed by
Sargent and Ashby[18] to be equal to that for isomechanical
b-Ti. The calculated transition between diffusional creep
and power-law creep (expected to occur for b-Zr at s 5
1.0 MPa for a grain size of d 5 0.2 mm and at s 5 0.25
MPa for a grain size of d 5 2 mm[18]) is in agreement with
the observed gradual decrease of the stress exponent below
about s 5 0.8 MPa.

The stress exponent n8107C 5 2.4 for a-Zr (measured over
the narrow stress range of interest for the present cycling
experiments) is much lower than the experimental literature
value for power-law creep of cold-rolled and annealed a-
Zr (n 5 6.6[18]). As for b-Zr, this intermediate value for the
stress exponent of a-Zr is attributed to a change of the
deformation mechanism from power law to diffusional
creep. For the as-received grain size of 19 mm, the two
mechanisms contribute equally to the overall strain rate at
a stress of 8.1 MPa.[18] Grain growth is, however, expected
to occur rapidly, as the sample is a pure metal at a homol-
ogous temperature of 0.51, so that grain sizes in the range
of d 5 0.2 to 2 mm can be expected, for which a stress
range for the mechanism transition is s 5 1.4 to 3.2
MPa,[18] close to the stress range investigated in Figure 2.

B. Thermal Cycling

1. Experiment design
The experimental setup (Figure 1) was designed to min-

imize deformation of zirconium in the b range, where creep
is rapid (Figure 2). While the large sample heads were
mostly shielded by the pull heads from the radiative heat
flux (Figures 1(b) and (c)), the gauge section was fully ex-
posed to the radiation, so that heat flow to the sample oc-
curred predominantly through the surface of the gage
section. Conversely, on cooling, little heat was lost by con-
duction through the alumina pins and spacers and the low-
conductivity superalloy load train (Figure 1(c)), so that heat
transfer occurred mostly by radiation from the gage surface.

During the allotropic phase change, the heat flux must
provide the transformation enthalpy. The time for the com-
plete transformation of the sample is, thus, proportional to
the ratio of the volume to be transformed (full sample vol-
ume, including gage section and sample heads) and the area
of the heat-flux surface (gage section surface area only).
Since heat flows predominantly through the gage section,
the transformation of the sample heads occurs by conduc-
tion of heat from and to the sample gage section. Given
that the initial volume–to–surface area ratio for the gage
section (V0/S0 5 1.2 mm) is small compared to the ratio of
the head volume to the gage area (Vh/S0 5 8.8 mm), the
gage section transforms much more rapidly than the large

sample heads. However, since conduction is not limiting,
the temperature in the bulk of the gage section remains
constant at the phase transformation temperature until the
sample heads are fully transformed, except for the surface,
where the surface temperature (Ts) is given by the boundary
condition Ts 5 TA. The slowly transforming heads, thus, act
as heat sinks on heating and heat reservoirs on cooling after
the gage section has fully transformed. By using cycle pe-
riods longer than the time interval necessary to complete
the phase transformation in the gage section but shorter
than the time interval necessary to transform the whole
sample, the sample temperature can be maintained at the
allotropic temperature Ta/b, thus minimizing excessive creep
in the b range. This heat-buffer technique is also potentially
interesting for commercial superplastic forming, as it allows
a passive control of the temperature and minimizes creep
in the weak allotropic phase.

2. Transformation times
The heat-transport analysis is based on the assumption

that (1) heat transfer is by radiation only, (2) the absorptiv-
ity and emissivity of the sample are a' 5 ε' 5 0.5, and (3)
thermal gradients are negligible within the material. The
latter assumption is validated by calculating the dimension-
less number M,[20] which is equivalent to the Biot number
for conductive heat transport and is defined as

3s z a ' z T z xBM 5 [3]
k

where sB is the Stefan–Boltzmann constant, a' is the ab-
sorptivity on heating (to be replaced by the emissivity ε' on
cooling), k is the thermal conductivity and x is the char-
acteristic distance, which is half the sample gage section
width for the transformation of the gage section or the full
head length for the transformation of the heads. With k (860
7C) 5 25 W z m21 z K21,[19] a' 5 0.5, T 5 940 7C, x 5
2.55 mm for the gage section and x 5 28.1 mm for the
sample head, Eq. [3] gives values for M smaller than 0.1
(M 5 0.005 and 0.06, respectively), so that thermal gradi-
ents within the material are negligible and conduction does
not control the heat transport (Newtonian conditions). The
absence of macroscopic thermal gradients within the ma-
terial also excludes the deformation by ratchetting observed
during allotropic cycling of, e.g., uranium[21], with a sharply
defined phase front.

In Figure 5, the temperature TB, as measured at the sam-
ple head surface, increases until the onset of the phase
transformation, where the rate of heating is reduced to near
zero due to the absorption of heat supporting the transfor-
mation enthalpy. After the gage section has transformed
(marked as tmin in Figure 5), the heating rate measured at
point B increases again until the temperature levels off at
about 30 7C below the upper cycling temperature specified
by TA. The preceding interpretation (i.e., that the tempera-
ture TB is largely constant during the transformation of the
sample gage section, but increases during the transforma-
tion of the sample heads) can be justified as follows.

Over the short time period corresponding to the gage
transformation, the temperature at the thermocouple tip B
is controlled by the sample temperature, which is constant
due to the phase transformation; however, over the long
time period where the sample heads transform, the heating
contribution from the heat flux to the thermocouple mantle
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Table II. Transformation Times as Obtained
Experimentally (Illustrated in Figure 5) and as Predicted

(Equation [4]).

Dt*9107C (s) Dt*9407C (s)

Figure 5 Eq. [4] Figure 5 Eq. [4]

Heating (Ts 5 Tu) 32.8 5 3.9 31.3 24.3 5 3.2 19.5
Cooling (Ts 5 T1) 34.0 5 1.2 33.6 34.3 5 2.6 31.7

Fig. 7—Adjusted total strain increment per cycle normalized by the
applied stress as a function of the cycling frequency for cycles with T1 5
810 7C, Tu 5 910 to 940 7C and stresses s 5 0.9 to 1.6 MPa. The symbols
are the same as in fig. 4.

Table III. Minimum Time tmin as Obtained from TB(t ) and
Maximum Time tmax as Obtained from D (t ) as Illustrated in

Figure 5

tmin (s) tmax (s)

TA 5
910 7C

TA 5
940 7C

TA 5
910 7C

TA 5
940 7C

Heating 85.3 5 5.1 51.5 5 2.1 510 225 5 5
Cooling 44.4 5 0.9 52.7 5 0.3 * *

*Not detectable.

and tip becomes dominant and the thermocouple tip tem-
perature TB rises again, despite the constant sample tem-
perature. As expected, the value of TB at the transformation
plateau increases with increasing flux, which is proportional
to 2 (Figure 5). Also, TB is lower than TA, because4 4T Tu a/b

thermocouple B is further from the focus line of the heaters
than thermocouple A, which is located at the gage section
surface. Thus, the thermocouple temperature measured at
position B (Figures 1(b) and (c)) is affected both by the
heat flux due to transformation and the impinging radiation.

Under Newtonian conditions where thermal gradients are
not sustainable within the material, the time (Dt*) to trans-
form a volume (V) by a radiative heat-transfer mechanism
through a surface (S) is

DH z r V
Dt* 5 z [4]

4 4 Ss z a ' z T 2 T( )B s a /b

where DH 5 538.8 J z g21[22] is the enthalpy of transfor-
mation (positive on heating and negative on cooling), r 5
6.49 g z cm23[23] is the density of zirconium, and Ts is the
surface temperature (Ts 5 Tu on heating and Ts 5 T1 on

cooling). Although the tungsten filaments of the radiant
heaters operate at a very high temperature, the heat flux to
the sample surface is closed-loop–controlled by thermocou-
ple TA maintained at temperature Ts, and is, thus, equivalent
to the flux from a furnace surrounding the sample and ra-
diating at a temperature of Ts 5 TA. The volume–to–surface
area ratio in Eq. [4] can be found as a function of the
engineering strain e by conservation of volume,

V 1 V05 z [5]
S S=1 1 e 0

where V0/S0 5 1.19 mm is the initial ratio of the gage sec-
tion. The transformation times predicted by using Eqs. [4]
and [5] are in good agreement with experimentally deter-
mined transformation times, as seen from Table II, where
averages are taken from four measurements. Although the
predicted time for transformation (Eq. [4]) depends on sev-
eral assumptions (e.g., a' 5 ε' 5 0.5), the values for Dt*
are reasonable, so that the time tmin in Figure 5 can indeed
be taken as the minimum time needed to heat the sample
from Tl to Ta/b and to transform its gage section.

This time, tmin depends on the cycle characteristics (Tl,
Tu, and n) and is given in Table III for Tu 5 TA 5 910 7C
and Tu 5 TA 5 940 7C. The minimum cycling period for
a complete transformation of the gage length is estimated
to be 2 z tmin (taking the larger tmin value of heating and
cooling from Table III), so that the maximum cycling fre-
quency is nmax 5 (2 z tmin)21 5 21 h21 for cycles with Tu 5
910 7C. At cycle frequencies above this limit, the super-
plastic strain is expected to decrease, as the gage does not
undergo a complete transformation. The cycle frequency
varied between n 5 6 and 30 hr21 at Tu 5 910 7C, for a
constant stress of s 5 1.0 MPa (Figure 7). By subtracting
the extrapolated strain per cycle when no external stress is
applied (Dε0) from the total strain per cycle and normalizing
by the applied stress, i.e., (Dεtot 2 Dε0)/s, the single-stress
results can be directly compared to the slope d(Dεtot)/ds,
obtained by varying the stress (Figure 4).

At Tu 5 910 7C, the strain increment per cycle normal-
ized by the stress d(Dεtot)/ds 5 4.4 5 0.3 GPa21 is constant
between n 5 6 and 15 h21, but decreases to 3.0 5 0.1
GPa21 at n 5 30 h21. This is because, at frequencies above
nmax 5 21 h21, only partial transformation occurs in the
gage section, so that the internal mismatch and, thus, the
superplastic strain increments, are reduced. When the upper
cycle temperature is increased to Tu 5 940 7C, the critical
frequency is increased to nmax 5 (2 z tmin)1 5 34 h21. In
contrast, the experimental data show a reduction of
d(Dεtot)/ds already occurring at about n 5 30 h21. This
value is lower than predicted, probably because of the effect
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of high cycle frequencies on the actual cycle temperatures:
the sample is not given enough time to cool to the lower
temperature or to heat to the upper temperature, thus de-
creasing the effective temperature amplitude, as discussed
in more detail later.

The deformation histories in Figure 5 show first the ther-
mal expansion of the load train, followed by a decreasing
expansion rate as the sample temperature is stabilized by
the phase transformation of the large sample heads. During
that time interval, the gage section, which is fully trans-
formed at tmin, is slowly creeping near the phase transfor-
mation temperature Ta/b, as internal thermal gradients are
not sustainable. The onset of accelerated expansion (marked
as tmax in Figure 5) is interpreted as the end of the phase
transformation of the sample heads, where both thermal ex-
pansion and sample creep occur.

At low cycling frequencies, significant strain will be ac-
cumulated due to creep outside the phase transformation
range, causing an increase of the total strain increment
(Dεtot). According to Figure 7, this occurs at nmin 5 (2 z
tmax)21 5 8.0 h21 for cycles with Tu 5 TA 5 940 7C and
nmin 5 (2 z tmax)21 5 3.5 h21 for Tu 5 TA 5 910 7C (dotted
lines in Figure 7). The results for tmax are given in Table
III, where the single data point tmax(TA 5 910 7C) was ob-
tained during isothermal creep at the end of thermal cycling
and tmax(TA 5 940 7C) is the average of four cycles with a
cycle frequency of n 5 6 h21. Since the measurements with
a slope of d(Dεtot)/ds 5 4.4 GPa21 in Figure 4 were per-
formed at rates falling within the window given by nmin and
nmax, the measured superplastic strain increments corre-
spond to complete transformation of a gage length, with an
insignificant creep contribution after transformation plastic-
ity.

A final check is performed by calculating the ratio of the
time to transform the whole sample (tmax 2 tmin1Dt*) to the
time for gage transformation. With experimental data from
Table II, this ratio is 14 at 910 7C and 8 at 940 7C, rea-
sonably close to the ratio of 8.3 for the total sample volume
to the gage section volume.

3. Cycle strains
To the best of our knowledge, only two other studies

exist on the transformation superplasticity of zirconium. An
early investigation was carried out by Lozinsky[13] under
nonuniform temperature conditions, giving only a qualita-
tive description of the effect. Greenwood and Johnson[18]

performed a systematic study for zirconium cycled between
810 7C and 910 7C and reported a linear strain increment–
stress behavior up to s 5 1 MPa (with a slope of
d (Dεtot)/ds 5 9.0 GPa21, significantly higher than that in
Figure 4), becoming progressively nonlinear up to a max-
imum strain increment of Dεtot 5 1.9 pct at s 5 1.4 MPa.
Although these results are qualitatively consistent with the
present data (linear stress-strain correlation at small stresses
followed by a nonlinear increase), direct comparison is im-
possible since Greenwood and Johnson stated neither cycle
frequency nor grain size, so that the creep contribution out-
side the phase transformation range at higher stresses is
unknown. Additional possible causes for their higher strain
increments in the linear range are the presence of primary
creep (if no creep deformation was performed prior to cy-
cling) and the contribution of diffusional creep (if the grain
size was not stabilized). The latter effect may also explain

the decreasing strain increment (from Dεtot/s 5 8.5 GPa21

to Dεtot/s 5 5.0 GPa21, not shown in Figure 4) observed
during the second part of our experiment.

The theoretical models relate the physical properties of
the transforming material (DV/V, s0, A, Q, and n) to the
plastic strain induced by a single phase transformation dur-
ing a half cycle. However, the plastic strain increments
measured over a whole cycle (Figure 3) include plastic
strains caused by both phase transformations on heating and
cooling, which are not necessarily equal. We examine this
issue in the following text.

The load-train displacement measured at the end of each
half cycle on heating (DDh) and on cooling (DDc) (Figure
3(b)) consists of the following three contributions:

DD 5 5 DD 1 DD 1 DD [6]h,c cte creep tp

where DDcte is the magnitude of the displacement of the
load train due to the thermal expansion on heating or con-
traction on cooling, DDcreep is the displacement due to sam-
ple creep outside the phase transformation range, and DDtp

is the displacement caused by transformation plasticity.
While DDcte is fully reversible over a whole thermal cycle,
DDcreep and DDtp give irreversible plastic strains at the end
of each half cycle. At low stresses where DDcreep is small
compared to DDtp (Figure 3(a)) and DDtp is linearly depen-
dent on the applied stress, Eq. [6] can be approximated by

d(D« )h,cDD ' 5 DD 1 z L z s [7]h,c cte ds

where Dεh,c is the strain increment per transformation (h
representing heating and c representing cooling) and L is
the gage length of the sample. Thus, the slope of DDh or
DDc as a function of L z s gives the stress–normalized strain
increment d(Dεh,c)/ds for transformation on heating and
cooling, respectively, as shown in Figure 8, where
d(Dεh)/ds 5 2.4 GPa21 and d(Dεc)/ds 5 2.0 GPa21. Al-
though the slightly higher value on heating may be due to
creep outside the transformation range, the difference in the
slope and in the intercepts at zero stress are within exper-
imental error (5 pct on strain and 8 pct on stress). Thus,
the strain increment per transformation on heating (a/b)
and cooling (b/a) are equal for a given stress (Dεh 5 Dεc

5 Dε) with d(Dε)/ds 5 2.2 5 0.2 GPa21, as predicted by
the linear theory (Eq.[1]). It is assumed that this also holds
for the nonlinear stress region described in References 14
through 16.

Because of its hcp structure, a-Zr exhibits different co-
efficients of thermal expansion for the basal plane and for
its normal direction, so that the corresponding thermal
strains are also a source of internal mismatch. The models
developed for transformation plasticity can be used for an-
isotropic thermal expansion mismatch by introducing an
equivalent volumetric mismatch (DV/V)eq, as follows:[15]

DV
5 K z Da z DT [8]1 m pl~ !V eq

where is the temperature-averaged difference betweenDam

the coefficients of thermal expansion in the two directions,
is the effective temperature amplitude causing plastic-DTpl

ity, and K1 is a correction factor incorporating the noni-
deality of the simple form of Eq. [8]. For a-uranium and
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Fig. 8—Deformation difference of the heating and cooling part of the
temperature cycle (Fig. 3(c)) as a function of the product of the applied
stress with the instantaneous sample length for cycles with T1 5 810 7C,
Tu 5 940 7C, v 5 15 h21, and s 5 0.3 to 1.3 MPa.

zinc, K1 takes a value of 0.215. The thermal mismatch strain
z can be estimated directly from the thermal dil-Da DTm pl

atation curve.[24] Neglecting any elastic accommodation, the
difference between the thermal strains (DL/L207C) parallel to
the c-axis and parallel to the a-axis is εc,8637C 2εa,8637C 5
0.49 pct at Ta/b 5 863 7C and εc,8107C 2εa,8107C 5 0.43 pct
at T1 5 810 7C, giving z 5 0.06 pct. Thus, theDa DTm pl

equivalent thermal expansion mismatch is (DV/V)eq 5 0.012
pct, which is negligible compared to the phase transfor-
mation mismatch DV/V 5 0.41 pct,[24] so that thermal ex-
pansion mismatch superplasticity can be ruled out in the
present case.

C. Internal Stress

1. Complete transformation
Greenwood and Johnson[8] developed a model for trans-

formation superplasticity where internal strain accommo-
dation is by creep. In their derivation, they expressed the
von Mises criterion in terms of strain rates, which they
integrated over the time of transformation to relate the in-
ternal strains with the average internal stress. By requiring
compatibility of strains in the z direction, where the external
stress is applied, and by using invariant properties of the
DV/V tensor, they obtained

s z [D« 2 (DV /V ) ]0 zz

s ' 5 [9]zz
(n2l )

29 z (D« ) 9 z D« z (DV /V ) 2znzz(DV /V ) z 1 1 2
2 2@ #4 z (DV /V ) 2 z (DV /V )

where (DV/V)zz and s'zz are the zz components of the mis-
match tensor and deviatoric stress tensor respectively, and
the average internal stress is given by

1/n

2 DV /V
s 5 E z z [10]0 3 A Q@ #Dt* z z exp 2~ !T R z Ta/b a/b

Defining the average of a function g over a spherical vol-
ume element within q 5 w 5 [0; p/2] as

* g dV
Vg 5 [11]
* dV
V

both sides of Eq. [9] can be averaged:

(12n)

9 9 2zn2C 5 (h 2 g) z 1 1 z h 2 z h z g [12]~ !4 2

where the dimensionless plastic strain is defined as h 5
Dε/(DV/V), the dimensionless deviatoric stress as C 5
s’zz/s0, and the dimensionless mismatch strain as g 5
(DV/V)zz/(DV/V), with g 5 (1/3) z cos (w)2 z sin (q)2 1 (1/3)
z sin (w)2 z sin (q) 2 2 (2/3) z cos (q)2, obtained by relating
the volumetric mismatch DV/V to (DV/V)zz (Reference 8).

The left-hand side of Eq. [12] is given by 5 (2/3) zC
(s/s0), while integration of the nonlinear right-hand side of
Eq. [12] is only possible by numerical methods (as done
by Mitter[16]), except for two special cases. First, for n 5
1, Eq. [12] becomes

3
d 5 z h [13]

2

where the dimensionless stress is defined as d 5 s/s0. Sec-
ond, for n→ `, (i.e., the ideal plastic limit), Eq. [12] be-
comes[14,15]

1 1 1 3 z h 1 1
d 5 1 1 z 2 2~ !4 6 z h 4 6 9 z h=2 2 z h [14]

2=(3 z h 1 3 2 z h 1 2)
z ln

29 z h 2 6 z h 1 4@ #
For the case of small strains where Dε ,, DV/V) (i.e., h
,, 1), Greenwood and Johnson[8] expanded the argument
of the right-hand-side integral of Eq. [12] to obtain Eq. [1],
expressed in dimensionless manner as

3 (4 z n 1 1)
d ' z z h [15]

2 5 z n

Thus, the internal stress s0 can be determined by fitting
experimental strain increment data to
(1) Eq. [12], by numerical integration;
(2) Eq. [13], for diffusional accommodation with n 5 1;
(3) Eq. [14], for power-law accommodation with a very

high stress exponent (n . 10) over the whole range of
stresses; and

(4) Eq. [15], for power-law accommodation at small
stresses (s ,, s0).
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Fig. 9—Dimensionless strain increment per transformation as a function
of the dimensionless stress. Experimental results for complete
transformation (adjusted as described in the text and with the same
symbols as in Fig. 4) are compared to model predictions for diffusional
creep (n 5 1, Eq. [13]), power-law creep (n 5 5, Eq. [12] (full), and Eq.
[15] (dotted)), and ideally plastic (n → `, Eq. [14]).

Alternatively, the internal stress can be found from
(5) Eq. [10], if the transformation time is known.

Because creep for zirconium in the stress range of inter-
est occurs by a mixture of dislocation creep and diffusional
creep with effective stress exponents between 2.9 and 5
(Figure 2), methods (2) and (3) cannot be used to calculate
the internal stress. Furthermore, most of the measured strain
increments are on the order of DV/V 5 0.41 pct (Figure 4),
so that method (4) with Eq. [15] is strictly not possible.
However, Eq. [15] has been used to model transformation
superplasticity of creeping materials even at larger stresses
and strains[8,12] where Eq. [15] coincides with the numerical
solutions (Eq. [12]). For cycles with complete transforma-
tion (n , 30 h21 in Figure 4), we compare in Figure 9 the
analytical and numerical solutions to the experimental data,
for which the measured strain Dεtot was adjusted by sub-
tracting the extrapolated zero-stress strain value Dε0 and
dividing by 2 to get the plastic strain increment per trans-
formation (i.e., Dε 5 (Dεtot 2 Dε0)/2), and the applied stress
was normalized by the internal stress s0 5 1.6 MPa. The
internal stress was determined from three of the previous
methods, as described in the following text.

First, fitting the data to the numerical solution of Eq. [12]
(method (1)) using a least-squares error technique gives an
internal stress of s0 5 1.6 MPa for D V/V 5 0.41 pct for
both n 5 2.9 and n 5 5, since the numerical solutions are
not very sensitive to n at intermediate strain increments
(i.e., 0.5 , h ,0.7), where most of the data were collected.
Second, using method (4) with Eq. [15] beyond its nominal
validity range, with d(Dε)/ds 5 2.2 5 0.2 GPa21, gives s0

5 1.4 to 1.5 5 0.1 MPa for stress exponents of n 5 2.9
and n 5 5, respectively. As expected, the latter values are
close to that obtained from fitting to the numerical solution
(method (1)), as both models coincide up to h ' 0.3. How-
ever, the data with normalized strains between h 5 0.5 to
0.7 (Figure 9) are consistently above the predictions by Eq.
[15], which is due to the difference of Ds0 5 0.15 MPa
found between the best fits for the linear model and the
numerical integration. Although this difference is small
('10 pct), it demonstrates the limitation of the linear
model.

Finally, method (5) gives an internal stress of s0 5 1.7
to 1.5 MPa when Eq. [10] is used with the b-Zr activation
energy (Qb 5 184 kJ z mole21[18]), elastic modulus (Eb 5
51.7 GPa at 863 7C[18]), creep exponent and constant (n 5
5.0 and A 5 1.1 z 1030 K z s21), and the experimentally
determined time periods for gauge transformation (Dt* 5
24 to 34 seconds) (Table II). When applying the lower
stress exponent creep law at 910 7C (Eq. [2], with A 5 4.6
z 1019 K z s21 and n 5 2.9 for s , 0.6 MPa), internal
stresses of s0 5 3.5 to 3.1 MPa are obtained. While these
internal stress values are much higher than those obtained
with methods (1) and (4) presented earlier, they are still
reasonable given the approximations made in determining
the time of transformation and the assumption that the plas-
tic strain is accumulated only during that time period (i.e.,
relaxation of the internal strains occurs quickly).

2. Partial transformation
Additional considerations must be taken into account to

model the partial transformation data in Figure 4. High-
frequency cycling causes a change of the internal stress
because of the smaller effective temperature amplitude to
which the sample is subjected, since heat transport to, and
from, the sample surface is reduced. The resulting reduction
in the thermal driving force for the phase transformation
increases the time period Dt* (Eq. [4], as shown for cycles
with Tu 5 910 7C and Tu 5 940 7C in Table III), which
would lead to a reduction of the internal stress, according
to Eq. [10]. However, the volume mismatch which develops
over the time Dt* is also reduced. Without specific infor-
mation about the relationship between the kinetics of the
internal mismatch decay and the time of transformation at
high cycle frequencies, a quantitative determination of the
internal stress on the basis of Eq. [10] is not possible. In
an attempt to quantify transformation superplasticity under
rapid cycling conditions, a simple approach is to define,
based on Eq. [1], an effective mismatch ((DV/V)eff ) and an
effective internal stress (s0,eff ).

DV 1 DV DV 1 1 z DV
5 z 1 z z 5 z [16]~ ! ~ !V 2 V V 2 Veff

1 s 1 1 z0s 5 z s 1 5 z s [17]0,eff 0 0~ !2 z 2 z z

where z is the ratio of d(Dεn)/ds (the superplastic slope for
partial transformation at a frequency n) and d(Dε)/ds (the
corresponding slope for complete transformation). Thus,
Eqs. [16] and [17] are the averages of the extreme cases,
where the reduction of d(Dε)/ds is due to either only a
change in DV/V or only a change in s0. From Figure 4, z
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Fig. 10—Dimensionless strain increment per transformation as a function
of the effective dimensionless stress. Experimental results for partial
transformation are effective, adjusted values as described in the text and
have the same symbols as in Fig. 4. Model predictions include diffusional
creep (n 5 1, Eq. [13]), power-law creep (n 5 1.5, 2, 5, Eq. [12]), and
ideally plastic (n → `, Eq. [14]).

5 3.0 GPa21/4.4 GPa21 5 0.68, so that (DV/V)eff 5 0.34
pct (for DV/V 5 0.41 pct) and s0,eff 5 2.0 MPa (for s0 5
1.6 MPa). Figure 10 shows the average effective dimen-
sionless data for partial transformation together with ana-
lytical and numerical predictions. The data points are found
to fit with the curves defined by n 5 1.5 to 2. Although
there is appreciable uncertainty regarding the exact value
of the normalized data due to the somewhat arbitary aver-
aging procedure defined by Eqs. [16] and [17], the nor-
malized results are significantly distinct from the curve
defined by n 5 5, even when extremes are considered, i.e.,
either (DV/V)eff 5 z z (DV/V) with s0 or s0,eff 5 s0/z with
DV/V.

Since the phase transformation occurs over a stress range
coinciding with the transition between diffusional creep (n
5 1) and power-law creep (n 5 5.0), the average transfor-
mation superplastic behavior might indeed be described by
the intermediate stress exponent and pre-exponential factor,
as suggested by the fit in Figure 10. Also, intermediate
values for n and A conform with the results found for com-
plete transformation (Figure 9), because the normalized
transformation superplastic strain is largely insensitive to
values of the stress exponent for n 5 1.5 to 5 up to d '
0.8. This is in contrast to the case of a yielding material,
where the strain increments, at an applied stress of 80 pct
of the yield stress, are within the nonlinear region.[10]

In summary, the partial transformation behavior observed
at high cycle frequencies can be characterized only quali-
tatively with the existing data, although the main factors
affecting transformation superplasticity have been identi-
fied. While the strain per cycle for a given stress is reduced

when transformation is incomplete, the average strain rate
is increased because of the high cycling frequency. Also,
higher applied stresses can be used before significant creep
occurs, because the sample temperature is fixed at Ta/b.
Thus, high-frequency cycling can be used for rapid defor-
mation by transformation superplasticity with large tensile
strains, as confirmed by the total strain in excess of 100 pct
accumulated during the parts of the experiment where rapid
cycling was used.

V. CONCLUSIONS

1. Transformation superplasticity was demonstrated for
polycrystalline zirconium with an engineering tensile
strain of 270 pct without fracture. Strains per cycle as
high as 1.6 pct and average strain rates of up to 1.3 z 1024

s21 were achieved with grain sizes as large as 2 mm.
2. Isothermal creep was measured for a-Zr at 810 7C and

for b-Zr at 910 7C between 0.3 and 2 MPa, where de-
formation occurs by a mixture of diffusional and dislo-
cation creep. A new technique was developed to
minimize creep during thermal cycling outside the phase
transformation range by using the transformation en-
thalpy of oversized sample heads as a heat buffer.

3. The transformation superplastic slope is d(Dε)/ds 5 2.2
GPa21 for each a/b and b/a transformation, leading to
a total value of 2 z d(Dε)/ds 5 4.4 GPa21 for a full
thermal cycle. Good agreement was found for the av-
erage internal allotropic stress as determined by two in-
dependent methods: first, by using the measured
isothermal creep law and transformation times, and sec-
ond, by using the experimentally determined transfor-
mation superplastic slope.

4. A window of cycle frequencies was found where the
superplastic slope is independent of the cycling fre-
quency, in agreement with predictions based on the
transformation times and the temperature amplitudes.

5. High cycle frequencies reduced the superplasticity linear
slope to 2 z d(Dε)/ds 5 3.0 GPa21. This effect is ex-
plained by an incomplete gage transformation resulting
in a decrease of the internal mismatch and an increase
of the internal stress. The stress- and strain-normalized
data can be fitted to b-Zr stress exponents between n 5
1.5 and 2, corresponding to experimentally determined
creep values.
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