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A numerical model of transformation superplasticity for iron

Peter Zwigl, David C. Dunand *
Department of Materials Science and Engineering, Northwestern Uni6ersity, E6anston, IL 60208, USA

Received 26 February 1998; received in revised form 7 September 1998

Abstract

A numerical model of transformation superplasticity for an elastic, ideally plastic material is presented using a two-dimensional
plane-strain formulation considering both temperature and displacement. The evolution of temperature, stresses and strains during
the a/g phase transformation of iron is computed for different values of the applied stress. For low stresses, the numerical model
predicts a linear relationship between the uniaxial applied stress and the uniaxial plastic strain increment accumulated after
crossing the phase transformation range. For high stresses, the relationship becomes non-linear: the strain increments tend to
infinity as the applied stress approaches the yield stress. Both of these trends are in qualitative agreement with existing analytical
solutions for transformation superplasticity in an ideally plastic material. Furthermore, upon introducing plane-strain specific
equivalent quantities for the transformation mismatch and the yield stress, the numerical model is in good quantitative agreement
with both analytical predictions and experimental data for pure iron. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Transformation superplasticity is a deformation
mechanism relying on the biasing by an externally
applied stress of isotropic internal mismatch stresses or
strains induced during the phase transformation of
allotropic polycrystalline materials. Plastic deformation
of the weaker phase due to the internal and external
stresses determines the macroscopic strain increment
developed during the allotropic transformation. As in-
ternal stresses are regenerated each time the material
transforms, large superplastic strains can result by ac-
cumulation of the individual strain increments pro-
duced during cycling about the allotropic temperature
[1–4].

For elastic, ideally-plastic materials, Greenwood and
Johnson [5] derived an approximate analytical solution
for the uniaxial strain increment Do accumulated during
a full temperature cycle (where the allotropic tempera-
ture is crossed twice), as a function of the absolute
value of the volume mismatch between the two al-

lotropic phases DV/V, the externally applied uniaxial
stress s and the uniaxial yield stress sY of the weaker
phase:
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However, Eq. (1) is valid only for applied stresses
which are small compared to the yield stress [6]. Based
on Greenwood and Johnson’s derivation, [6,7] the
model can be extended for all applied stresses below the
yield stress:
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where the dimensionless parameters d=s/sY and a=
(Do/2)/(DV/V) have been introduced. Eq. (2) was found
to be in good agreement with experimental data for
pure iron undergoing the a/g transformation without
strain-hardening [6]. As expected, Eq. (2) tends toward
the limit for small stresses (Eq. (1)) expressed in a
dimensionless manner for half a temperature cycle as:
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While the closed-form solution Eq. (2) is compact and
predictive, it does not give any information about the
time–evolution of internal or macroscopic strains dur-
ing the allotropic transformation. Such information can
however be generated by numerical models, which can
also take into account the temperature-dependence of
the thermo-mechanical properties during thermal cy-
cling and the coupling between thermal and mechanical
behavior of the material. Numerical modeling has been
used to study the related problems of thermal mismatch
superplasticity in Al–SiC composites during thermal
cycling [8,9], and transformation plasticity in steel by
formation of pearlite [10] or martensite [11–14]. The
origin of the internal stress in these models is based on:
(1) full-bonding at the phase-boundaries for com-
posites; (2) unit-cell constraints; and (3) reaction-
stresses caused by a two-dimensional representation of
a three-dimensional state of stress (e.g. plane stress
assumes a stress-free surface and plane strain a reaction
stress along the 3-direction). Despite these simplifica-
tions, the results of these numerical models are in
agreement with experimental observations and analyti-
cal predictions and thus validate the above
assumptions.

In the present paper, we develop a numerical model
for a material undergoing an allotropic phase transfor-
mation under an externally applied stress. The validity
of the numerical model is established through compari-
son of the numerical results for the case of iron to
predictions of the analytical model given by Eq. (2) and
experimental results [5,15]. Furthermore, the consis-
tency of the numerical model with respect to changes of
the yield stress and of the allotropic volume mismatch
is tested and the evolution of strains during the cycle is
discussed.

2. Model

Based on the successful numerical description pre-
sented in the literature for thermal mismatch superplas-
ticity in composites [8,9] and transformation-induced
plasticity [11–14] (i.e. deformation by shear), a two-di-
mensional representation is sufficient to capture the
physical behavior of the complex three-dimensional
problem of transformation plasticity modeled by Eqs.
(2) and (3). In the present approach, the mismatch is
not generated locally at the boundary between the two
allotropic phases; rather, the mismatch occurs uni-
formly over the whole domain as a result of the plane-
strain constraint. A plane-strain formulation is
preferable to the use of an axial-symmetric state of
stress, which introduces a radial dimension as an addi-
tional arbitrary quantity. Also, the axial-symmetric
state of stress approaches plane-strain conditions at
large radii. Finally, a plane-stress state is not suitable as

no mismatch would be produced in the domain. Other
two-dimensional stress states such as generalized plane-
strain could be used, but the potential gains are mar-
ginal given the additional complexity.

The current work explores the simple base-line case
of a transforming, ideally-plastic material showing no
strain-hardening, for which both analytical solutions
and experimental data exist. Once the validity of the
simple model is established, it could be extended with
some confidence to the more complex cases of strain-
hardening, time-dependent deformation and multi-
phase materials.

The numerical model consists of 16 plane-strain,
temperature-displacement elements [16] regularly ar-
ranged in a square 4×4 mesh with a length L0=100
mm as shown in Fig. 1. The boundary- and symmetry
conditions are defined such that the mesh remains
rectangular throughout the analysis. The initial temper-
ature of the stress-free domain was set to T=909°C.
Defining the 3-direction as being constrained by plane-
strain (i.e. o33=0), an external uniaxial stress s22 (re-
ferred to as s in the following) is applied along the a–a
edge of the mesh for the first step of the analysis. In the
following steps, a square temperature profile (Fig. 1) is
repeatedly applied along the b–b edge of the mesh
where the temperature is cycled between Tl=909°C
and Tu=915°C about the a–g allotropic range of iron,
taken as 911.5–912.5°C. The temperature isotherms are
perpendicular to the direction of the applied stress so
that ratchetting is possible. The time-incrementation
during the transient temperature-displacement analysis
(performed with ABAQUS version 5.5 [16]) is set so
that the element strain is below 5×10-4 and the temper-
ature difference is below 0.2 K during each increment.
Heat transport is assumed to occur by convection with
a heat transfer coefficient h=50 W m−2 K−1. Consis-

Fig. 1. Mesh, symmetry and boundary conditions of the plane-strain,
temperature-displacement model. The applied temperature profile is
given in insert.
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Table 1
Physical properties of iron near the phase transformation

Temperature ReferenceProperty

911.5°C (a-iron) 912.5°C (g-iron)

7.587.87r (g cm-3) [18]Density
DH (J g-1) 18.8 [19]Transformation enthalpy

[19]0.710.87CP (J g-1 K-1)Specific heat
11.1 [17]Coefficient of thermal expansiona a20°C (K−1) · 106 15.0

0.286 [20]Thermal conductivity k (W cm-1 K-1) 0.296
0.3b 0.3Poisson’s ratio n (−) [18]

65.1 117 [21]E (GPa)Young’s modulus

a Technical value, defined as a20°C = (L−L20°C)/(T−20°C) where L and L20°C are the sample lengths at temperatures T (°C) and 20°C,
respectively. This value for g-iron incorporates the allotropic contraction.

b n=0.5 was used during yield.

tent with the analytical model, isotropic macroscopic
material properties are used to model the a–g transfor-
mation of iron, as summarized in Table 1.

As shown in Fig. 2 for the thermal strain, the density
change is modeled by varying the technical coefficient
of thermal expansion a20°C linearly over the allotropic
temperature range between the values given in Table 1.
The technical coefficient of thermal expansion includes
the contraction due to the a/g-iron transformation with
respect to room-temperature and thus has a smaller
value for g-iron than for a-iron. However, the instanta-
neous thermal expansion, defined as the slope of the
extension/temperature curve, is higher for g-iron than
for a-iron. Using technical coefficients of thermal ex-
pansion, the allotropic length change is:
DL
L

= (a20$C, a
−a20$C, g

) · DT (4)

With a20°C, a and a20°C, g taken from Table 1, and with
DT=912–20°C, Eq. (4) gives DL/L=0.348%, corre-
sponding to a volume change (DV/V)=3.(DL/L)=
1.04%, in agreement with the value reported for iron
[17].

The yield stress of the low-temperature a-iron is
taken as sY=7.5 MPa, as determined from experimen-
tal transformation superplasticity data [6]. It is assumed
that the yield stress of the material is equal to that of
a-iron throughout the transformation (i.e. over DT=1
K), and that it increases rapidly to that of g-iron
immediately after the end of the phase transformation
over a small temperature interval DT=0.1 K, as shown
in Fig. 2. Since g-iron is much stronger than a-iron, we
assume a factor ten between the yield stresses of the
two phases, but our results are insensitive to the exact
value of this factor, as long as g-iron remains elastic
throughout deformation.

3. Results

Fig. 3(a) shows the time-dependence of the strain o22

(referred to as o in the following) and the domain
temperature during the first three thermal cycles for an
applied stress s=4.0 MPa. The cycle period is Dt=240
s, with equal intervals Dt1/2=120 s for heating and
cooling. The temperature was determined at the upper
right hand corner of the domain and thermal gradients
within the material were below DT=0.1 K at all times.
During the heating stage of the cycles, the temperature
increases rapidly from T=909°C to the onset of the
phase transformation, modeled at T=911.5°C. Because
of the heat absorbed or released during the phase
transformation, the heating and cooling rates are re-
duced when the material transforms (Fig. 3(a)).

A small thermal expansion is observed upon initial
heating (Fig. 3(b)) before the domain shrinks over the
phase transformation interval DT=1 K. This large
allotropic contraction is followed by a small thermal
expansion (Fig. 3(c)) upon heating to the upper cycling
temperature T=915°C. On cooling, thermal contrac-
tions occur outside the phase transformation interval
over which the material expands (Fig. 3(c,d)). An over-
all plastic strain increment in the 2-direction (referred

Fig. 2. Thermal strain (DL/L20°C) with allotropic strain (DL/L) and
yield stress sY as a function of temperature.
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Fig. 3. (a) Total uniaxial strain in the 2-direction and temperature as
a function of time during the first three cycles for an applied stress
s=4.0 MPa and a uniaxial yield stress at sY=7.5 MPa; (b,c,d) are
magnified regions of the strain history.

Fig. 5. Strain increment in the 2-direction for a full cycle as a function
of the allotropic volume mismatch for applied stresses s=4.0 and
8.0 MPa respectively with a uniaxial yield stress sY=7.5 MPa.

function of the applied stress. A linear relationship
between the strain increment and the applied stress
exists at low stresses, while progressively increasing
strain increments are developed at high stress levels.
Also, finite strain increments are obtained above the
uniaxial yield stress sY because of the plane-strain
condition, as discussed later. When higher values are
taken for the yield stress limits (sY=11 MPa for a-iron
and sY=110 MPa for g-iron), smaller strain incre-
ments are observed at low stresses and the divergence
occurs at a higher applied stress.

To examine the sensitivity of the model to the value
of the allotropic volume mismatch DV/V, the technical
coefficient of thermal expansion of g-iron was further
varied, i.e. a20°C, g=a20°C, a− (DV/V)/(3.DT). Fig. 5
shows the effect of the volume mismatch on the strain
increment per cycle for applied stresses of s=4.0 and
8.0 MPa, respectively, using a uniaxial yield stress of
sY=7.5 MPa. The strain increment is proportional to
the volume mismatch, with slopes d(Do)/d(DV/V)=
0.30 and 1.35 at the lower and higher applied stress,
respectively.

4. Discussion

4.1. Temperature-, strain- and stress-e6olution

The numerical results showed that thermal gradients
were insignificant (DTB0.1 K) with the standard 16-el-
ement mesh (or with meshes containing 64 and 256
elements). This is consistent with the value much
smaller than unity for the Biot number:

Bi=
h · L0

k
(5)

to as Do in the following) is observed after each full
cycle. The magnitude of the strain increment, which
was taken as the difference of plastic strains between
the start and the end of a cycle, changes slightly be-
tween the first and the succeeding cycles, because of
different residual stresses: at the onset of the first
heating ramp, the material is free of residual stresses,
but at the onset of the second and all subsequent
heating ramps, residual stresses exist in the material.
The value of Do remains unchanged after the first cycle.

Fig. 4 shows the steady-state strain increment in the
2-direction (i.e. Do for the third temperature cycle) as a

Fig. 4. Strain increment in the 2-direction for a full cycle as a function
of the applied stress for uniaxial yield stresses sY=7.5 and 11 MPa,
respectively.
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where k is the thermal conductivity and L0 is the
domain length (Fig. 1), with values h=0.005 W
cm-2.K-1, k=0.3 W cm-1.K-1, L0=0.01 cm, Eq. (5) gives
Bi=1.7 · 10-4. Under these thermal conditions, the time
for transformation is:

Dt=
L0 · r · DH
h · �TS−TP� (6)

where r is the density, DH is the transformation en-
thalpy, TS is the surface temperature (TS=915°C and
909°C on heating and cooling, respectively) and TP is
the phase transformation temperature. Since the phase
transformation is modeled over a temperature interval
DT=1 K, Eq. (6) is integrated between TP1=911.5°C
(or 912.5°C) and TP2=912.5°C (or 911.5°C) for heating
(or cooling):

Dt=
L0 · r · DH

h ·�TP2−TP1� · ln
�TP1−TS

TP2−TS

�
(7)

Taking an average density of r=7.73 g cm−3, the
expected time for transformation from Eq. (7) is Dt=
98 s, close to the value found numerically (Dt=102 s
for Fig. 3(a)).

Based on the elastic responses oel of the domain upon
initial application of a series of externally applied uni-
axial stresses (e.g. Fig. 3(b) for s=4.0 MPa), the
numerical elastic modulus for a-iron at T=909°C is
E*=71.6 GPa, in good agreement with the expected
value of the elastic modulus in plane-strain E*=E/
(1−n2)=71.5 GPa (where n is Poisson’s ratio), using
elastic constants given in Table 1.

The magnitudes of the thermal strains outside the
phase transformation range (Fig. 3(c,d)) are small com-
pared to transformation strains (Fig. 3(a)), so that
thermal expansion mismatch plasticity can be excluded
as a deformation mechanism. Furthermore, because the
thermal and allotropic strains have opposite signs, the
small thermal mismatch outside the transformation
range reduces the allotropic mismatch produced during
transformation.

As shown in Fig. 3(a) for an applied stress s=4.0
MPa, the sample shrinks in the 2-direction during
heating through the transformation by Doh= −0.370%
and expands on cooling by Doc=0.669%, giving a
strain increment over a whole cycle of Do=Doh+Doc=
0.299%. The magnitude of Doh and Doc are different
because on cooling the allotropic strain DL/L has the
same sign as the plastic strain due to the applied stress,
while on heating the strains have opposite signs. When
no stress is applied, the uniaxial allotropic strains devel-
oped on heating and cooling in the 2-direction are
equal and of opposite sign: �o0�=0.516%. This strain
translates into a volume change DV/V=2.o0=1.032%
for plane-strain conditions, close to the allotropic vol-
ume mismatch (DV/V=1.048%).

4.2. Model discussion

The model is sensitive to the assumption made for
the temperature-dependence of the yield stress during
the transformation. The present results are for the
specific case where plasticity occurs throughout the
transformation range at the lowest yield stress of a-iron
(Fig. 2). Physically, this is equivalent to plastic defor-
mation being spatially localized in the weak a-iron until
that phase disappears. The continuum approach taken
in the numerical model approximates this spatially in-
homogeneous behavior by assuming that the whole
domain yields at the yield stress of the a-iron. If instead
a rule of mixture is used for the yield stress, much
reduced plasticity is found.

The nature of the mismatch needs to be examined,
since the numerical model allows for two possible types
of mismatch. Firstly, internal mismatch stresses are
produced by the constraining effect in the 3-direction
from the plane-strain condition, i.e. transformation
mismatch plasticity and thermal mismatch plasticity.
Secondly, since in the present case the material is
heated and cooled from one side (Fig. 1), a phase front
may form and move in the 1-direction through the
material and mismatch stresses can then arise locally
near the phase front, i.e. ratchetting. However, no
strain increment was observed after a full temperature
cycle under zero applied stress (Fig. 4), indicating that
ratchetting was absent. This is further confirmed by the
lack of thermal gradient discussed earlier.

Because the temperature-, stress- and strain-fields are
spatially almost completely homogeneous, the domain
presented in Fig. 1 could be replaced by a single
element. While this would reduce the computational
effort, the non-linearities introduced by the material
properties prevent a further reduction to an analytical
formulation. The numerical results were insensitive to
changes of the cell geometry and domain length. Very
small domains or very large heat transfer coefficients
could however induce ratchetting.

The numerical results shown in Fig. 4 are in qualita-
tive agreement with the prediction of the analytical
solution (Eq. (2)): a linear strain–stress behavior at low
stresses is followed by a non-linear strain increase at
high stresses. Thus, the numerical model shows the
fundamental physical behavior of phase-transformation
superplasticity, as observed experimentally and pre-
dicted analytically. Besides the possibility of qualitative
comparisons to other materials (e.g. to compare trans-
formation superplasticity of iron with that of cobalt),
the model can be used for parametric studies, such as
the effect of the volume mismatch on the strain incre-
ment (Fig. 5). In what follows, an attempt is made to
incorporate model-specific assumptions which allow a
direct quantitative comparison to analytical models and
experimental results.
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The fundamental difference between the analytical
and numerical models is the origin of the allotropic
mismatch. In the three-dimensional analytical model
leading to Eq. (2), internal stresses occur because the
transformation is constrained within a plastically de-
forming material. In the two-dimensional numerical
plane-strain model however, the constraint along the
3-direction is the source of the internal stresses. Thus,
the internal stress field is caused by the constraint in
one single dimension (the 3-direction), as compared to
the constraint in all three dimensions in the analytical
model. Thus, to a first approximation, the mismatch in
the numerical two-dimensional model is lower by a
factor three than the mismatch in the analytical three-
dimensional model. Then, to compare these models, an
equivalent mismatch in plane-strain (DV/V)* is defined
as:�DV

V
�*

=
1
3
�DV

V
�

. (8)

In the present case, (DV/V)*= (DL/L)=0.348%.
Another important difference between the models is

the stress at which plasticity occurs. While the analyti-
cal model is based on yield under uniaxial tension, the
current numerical model considers yield under plane-
strain conditions. For plane-strain under an applied
stress s in the 2-direction, the non-zero stress compo-
nents are: s22=s, and s33=ns. Thus, the equivalent
Von Mises stress is:

seq=s ·
1−n+n2 (9)

and the uniaxial stress in the 3-direction to induce
plastic yielding sY* is:

sY* =
sY


1−n+n2
. (10)

Taking n=1/2, Eq. (10) gives sY* = (2/
3)sY.
For the specific case of Fig. 4 with a uniaxial yield

stress sY=7.5 MPa, the plane-strain yield stress calcu-
lated from Eq. (10) is then sY* =8.66 MPa. As ex-
pected, the strain increments in Fig. 4 are finite above
sY but tend to infinity when approaching sY* . The same
overall behavior is observed in Fig. 4 for the higher
yield stress sY=11 MPa. At small stresses, the strain
increments are proportional to the applied stress, but
the proportionality constant is smaller than for sY=
7.5 MPa, as expected from the larger value of sY and
Eq. (1). At high stresses, the curve diverges when the
stress approaches the plane-strain yield stress sY* =
12.70 MPa.

The plane-strain specific volume mismatch (Eq. (8))
and yield stress (Eq. (10)) can be used to renormalize
the analytical solutions using

a*=
Do

2 · (DV/V)*
(11a)

d*=
s

sY*
(11b)

instead of a and d in Eqs. (2) and (3). The numerical
results (Fig. 5) confirm the linearity between the mis-
match DV/V and the strain increment in the 2-direction
Do. The results at the lower stress s=4.0 MPa can be
compared to Eq. (3) using the specific plane-strain
quantities (Equation 11(a,b)). With d*=0.46, Eq. (3)
predicts a*=0.38. This is to be compared to the slope
of d(Do)/d(DV/V)=0.30 in Fig. 5, which must be
multiplied by a factor 3/2 to account for a half cycle
(factor 2, Equation 11(a)) and for the effective mis-
match (factor 3, Eq. (8)), resulting in a value of 0.45.
For a high stress s=8.0 MPa (d*=0.92) where the
strain increments increase non linearly with the applied
stress, Eq. (2) gives a*=3.0, while (3/2).d(Do)/d(DV/
V)=2.0 is obtained from Fig. 5. The numerical model
thus underestimates the analytical normalized strain
increment, probably as a result of the different assump-
tions used.

Fig. 6 shows the numerical values of Fig. 4 normal-
ized by the plane-strain mismatch (DV/V)* and the
plane-strain yield stress sY* given by Eqs. (8) and (10).
Also shown in Fig. 6 are the predictions from Eqs. (2)
and (3) (using 2 · a for a full temperature cycle encom-
passing both phase transformations) as well as experi-
mental data on pure iron [5,15]. In the linear region at
low stresses (dB0.4), there is good agreement between
the numerical, analytical and experimental results. In

Fig. 6. Strain increment in the 2-direction for a full cycle normalized
by the transformation mismatch as a function of the applied stress
normalized by the yield stress. Comparison between analytical predic-
tions, numerical predictions and experimental results for pure iron.
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the non-linear region however, the two-dimensional
numerical model gives somewhat higher strain values
than the three-dimensional analytical solution (Eq. (2)),
but correctly predicts the progressive departure from
the linear behavior observed both in the analytical
model and the experimental data. Also, the experimen-
tal point for the highest stress is significantly lower than
predicted by the models, probably because the large
strains developed during cycling give raise to strain
hardening, thus increasing the yield stress of the mate-
rial and decreasing the total strain increment, as mod-
eled in [6].

5. Conclusions

A numerical model for transformation superplasticity
is presented for an elastic, ideally-plastic material,
where the thermally-induced transformation generates
the internal stresses. Numerical results for the a/g-iron
phase transformation qualitatively capture the behavior
predicted by existing closed-form solutions, i.e. the
uniaxial strain increments after a thermal cycle increase
first linearly with the uniaxial applied stress, but diverge
when the applied stress becomes large. However, the
numerical model approximates the constrained phase
transformation in a polycrystalline material with a sim-
ple average plane-strain constraint. Thus, while the
constrained mismatch for a polycrystalline material is
DV/V, only one third of this volumetric mismatch is
available as the mismatch source in the plane-strain
configuration, where only one direction is constrained.
Furthermore, the yield stress in plane-strain is slightly
higher than the yield stress under uniaxial conditions.
Taking these two differences into account in the nor-
malization of the data, the numerical model can be
quantitatively compared to the analytical model as well
as experimental data for iron. Good agreement is then
found both for small stresses (where strain increments
increase linearly with stress) and for high stresses
(where the behavior is non-linear).
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