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Introduction 

When a metal containing elongated inclusions is subjected to a large change of temperature, 
prismatic dislocations are punched into the matrix to relieve the mismatch stresses induced by the 
different coefficients of thermal expansion (CTE) of the metal and the inclusion. This 
phenomenon has been observed in metals reinforced with whiskers (1, 2) and silver chloride 
containing glass and alumina fibers (3-5). It is also relevant to metals containing submicroscopic 
second phases of elongated shape, such as S-needles in A1-Cu-Mg, 13'-needles in A1-Mg-Si (6) or 
V(C,N) and AIN rods in steels (7). 

Taya and Mori (1) have modelled the longitudinal punching of a row of loops by a mismatching 
fiber by assuming that the fiber and its plastic zone can be described by two inscribed prolate 
spheroids. They calculate the potential energy of the system using Eshelby's equivalent inclusion 
method and find the punching distance by minimizing the sum of the potential energy and the 
work done by the motion of the loops against the lattice friction stress. Recently, we proposed 
another model to calculate the number of loops punched by a cylindrical mismatching fiber and 
the punching distance (8), based on the shear-lag model proposed by Cox (9) and the equilibrium of 
a row of prismatic loops (10). Experimental data gathered on silver chloride containing glass fibers 
(5) was in reasonable agreement with the latter model, but less so with that of Ref. (1). We 
proposed that the observed discrepancy was due to two of the different physical and geometric 
assumptions made: (i) full plastic relaxation was assumed in Ref. (1) while only partial plastic 
relaxation was allowed in Ref. (8) and (ii) the fiber and its plastic zone are described in Ref. (1) by 
inscribed spheroids, while a cylindrical fiber punching a cylindrical row of coaxial loops of same 
diameter was considered in Ref. (8). 

In what follows, we extend Taya and Mori's original model by relaxing condition (i), i.e., by 
allowing the spheroid fiber to punch more or fewer dislocation loops than the number necessary to 
exactly relax the longitudinal thermal strain. We also consider the case where radial strains are 
relaxed independently. We then give examples in two different systems and compare the models 
to existing data. 

Theory 

Consider a relaxed fiber of CTE otf in an infinite, non strain-hardening matrix of CTE am. Upon a 
change of temperature AT, the thermal strain a" is given by: 

a" = (a~.- a.,)  a T  [11 
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Fig. 1: Spheroidal fiber surrounded by a spheroidal plastic zone of punched prismatic loops 
(after Ref. 1). 

The fiber is represented by a prolate spheroid (£~1) of major and minor axes c and a, centred at the 
origin of the coordinate system Oxyz .  Prismatic loops are created at the surface of the fiber and are 
assumed to be punched in the z-direction only. This row of prismatic is described by the surface of 
another prolate spheroid (f22) inscribing the fiber (f~l) and of major and minor axes c' and a (Fig. 1). 
The prismatic loops are smeared-out and are replaced by the eigenstrains: 

ct" 0 0 

el} ° = 0 et* 0 

0 0 ( l -x)  a" 

[2a] 

0 0 0 

e~ ° = 0 0 0 [2b] 

o o X a*l~ 
where ~ = c'/c and X is the degree of prismatic punching in the z direction or degree of plastic 
relaxation. X =0 corresponds to the case where no loops are punched, X =1 to that when the 
mismatch due to the CTE difference in the z-direction is relaxed by prismatic loop punching, i.e., to 
Taya and Mori's original model. This corresponds to a number N of punched loops of Burgers 
vector b given by: 

N b = X c ot ° [3] 

The elastic strain energy energy per unit volume U of the system shown in Fig. 1 is given in Ref. 
(1) as: 

+ + )} [41 

(after correction of two typographical errors in the first term of the right hand-side of equation [13] 

in Ref. (1)). Cl, jkl and Cqkl are the stiffness tensors of the fiber and matrix, S~t,,,, and S~tm,, the fiber 
and matrix Eshelby's tensors and h the volume fraction of fibers. The only unknown is thus e I"* 
which is determined from Eq. [8] of Ref. (1): 
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+ sl,. . ,; '; .  - 4 ; )=  - + sh.. . ,a ' ; -  4; ')  [51 

As in Ref. (1), we use an expression by Tanaka et al. (11) for the work per unit volume W spent 
moving the N dislocations against the lattice friction stress k : 

W = X ]31 fl k ~" (4- 1) [6] 

where fll = c/a. The dimensionless punching distance ~ can then be determined by solving 

~2(U+ W) =0 [7] 
~4 ~x 

In summary,  we have expanded Taya and Mori's original model to the case where relaxation 
differs from that necessary for full relaxation of the fiber in the punching direction. Taya and 
Mori's original model solved Eq. [7] with the added condition that X=I. 

Results and Discuss ion  

We used a program written in the Mathematica TM symbolic programming language to solve Eqs. 
[4] and [5], yielding a solution for the potential energy U too long to be reported here. To solve Eq. 
[7], the value of (U+W)/fl was minimized numerically using the method of steepest descent from 
the starting point (4=1 ,X=0), which corresponds physically to the state of the fiber before punching 
is initiated. The numerical minimisation yields the first minimum of the function investigated 
and it is thus possible that the absolute minimum is located at another point separated from the 
local minimum by an energy barrier. In such a case, however, the composite is expected to reach 
the local minimum and stay in this state, unless the energy barrier can be overcome. 
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Fig. 2: Graph for (U+W)ffl as a function of the relative punching distance 4 and the relaxation 

parameter  X- A dot marks the location of the minimum, (40, XO) and the curve for X=I is high- 
lighted. Mismatching SiC spheroid of aspect ratio 3 in a titanium matrix with AT=-300 K. 
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TABLE 1: Thermal and Mechanical Materials Constants. 

G (GPa) X (GPa) ° v cL (106/K) aT (K) k (MPa) 

SiC 192.3 99.1 0.17 3.6 m 
Ti 44 114.5 0.361 8.6 -300 13.7 
glass 34.8 42.8 0.22 6.5 m 
AgCI 5.5 21.1 0.343 30 -100 0.5 

"calculated from Z = Ev/(l+v) (1-2v) 

To compare Taya and Mori's original model and its modified version presented here, we chose 
the system Ti/SiC, the properties of which are listed in Table 1. Fig. 2 shows a typical plot of 

(U+W)/fl as a function of the two variables ~ and Z. It is apparent that the minimum (~0, ZO) of 

this surface is different from the minimum f ' o f  the curve (U+W)ffl for Z=I, corresponding to 
Taya and Mori's original model. The value of (U+W)/fl for ~=1 remains constant, as it should on 
physical grounds, because this corresponds to no dislocation punching. The parameter Z 0 is larger 
than 1, meaning that the fiber has punched more dislocation loops than are needed to relax the 

mismatch a* in the z-direction alone. This might be because in the absence of lateral plastic 
relaxation, the fiber is subjected to radial compressive stresses which induce additional 
longitudinal relaxation. The maximum longitudinal strain due to this Poisson's effect should be of 
the order of 2 v, so the maximum value of Z0 should be about 1+2 v. This is indeed more than the 
values we find for Z 0 in the present calculations. 

Fig. 3 gives ~" and C0 with its corresponding value of Z0 as a function of the fiber aspect ratio/J1. 
The general shape of the relative punching distance curves is similar; in particular, both models 
predict a critical fiber aspect ratio above which punching is suppressed. For small fiber aspect 
ratios, the present model predicts values of ~0smaller than ~" as well as values of ;CO larger than I. 
At large fiber aspect ratios, however, X0 becomes smaller than 1 and ~01arger than {°. 
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Fig..3: Punching distance for the system 
Ti/SiC according to the original model 
of Ref. (1), ~', and to the modified 

model, C0, as well as punching 
parameter, ZO, as a function of the 

spheroid aspect ratio ~1. 
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Fig. 4: Dimensionless punching distance for three models and experimental data points from Ref. 
(5) for the system AgC1/glass. 

Curves were also calculated for the system AgCl/glass for which experimental data exist. Fig. 4 
shows the calculated dimensionless punching distance c'/2a as a function of the spheroid aspect 
ratio c/a for both the original and the modified Taya and Mori's models, using the parameters 
listed in Table 1. Also plotted in the same figure are experimental values reported earlier (5), as 
well as the prediction range of the model based on the shear-lag assumption and dislocation 
equilibrium considerations presented in Ref. (8). Unlike Taya and Mori's original model, the 
modified model presented here is within experimental error of the data. While the quantitative 
disagreement in punching distance between Taya and Mori's modified model and the shear-lag 
based model (8) is moderate for the small fiber aspect ratios plotted in Fig. 4, qualitative 
disagreement between the two models remains since the modified Taya and Mori model predicts a 
higher dislocation number as well as a critical fiber aspect ratio above which punching is 
suppressed. 

Observations made on the relaxed glass fibers in silver chloride (5) showed that dislocations were 
punched radially as well as longitudinally, leading to the conclusion that the fibers were radially 

1 • relaxed. To approximate this situation, we modify eij in Eq. [2a] so that there is no radial mismatch 

0 0 0 

ei}'= 0 0 0 

o o (l-z) a" 

[8] 

The resulting curves for c'/2a are shown in Fig. 5 where both the curve for X=l and that for 
variable x are shifted toward smaller punching distances. We thus conclude that Taya and Mori's 
models, in both their original and modified form, fit the data on AgCl/glass better if radial 
relaxation is assumed. The parameter Z was lowered by the assumption of lateral relaxation, 
however it remained greater than I for the range of 131 in Fig. 5. This indicates that the radial 

stress does not fully explain why Z can be greater than 1. 
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Fig. 5: Punching distance for Taya and Mori's original and modified models assuming no radial 
mismatch, Eq. [8]. Experimental data points for the system AgCl/glass from Ref. (5). 

C o n c l u s i o n s  

- A model by Taya and Mori (1) predicting the length of a row of dislocation loops punched from 
a mismatching prolate spheroid has been extended to the more general case where the degree of 
plastic relaxation is not set equal to the longitudinal mismatch. 

- Calculations made on the systems Ti/SiC and AgCl/glass show that, for small spheroid axis 
ratios, the modified model predicts a smaller punching distance than the original model. The 
degree of relaxation can be higher or lower than that predicted by the original model. 

- The modified model fits the experimental data on silver chloride containing cylindrical glass 
fibers of small fiber aspect ratio better than the original model. 

- Full lateral relaxation further lowers the punching distance, improving agreement with 
experiment. 
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