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Abstract--Silver chloride containing alumina fibers or glass microspheres is used as a model material to 
study matrix plasticity induced by thermal mismatch in metal matrix composites. Resulting matrix 
dislocations are decorated at room temperature in the bulk material and observed by optical microscopy. 
Plastic deformation of the matrix around the inclusions is found to take the form of (i) rows of prismatic 
dislocation loops punched into the matrix and/or (ii) a plastic zone containing tangled dislocations 
surrounding the inclusions. From the number of loops punched by spheres, the temperature interval over 
which slip of prismatic loops is operative is calculated to be 100 + 30 K wide. The stress in the plastic 
zone around fibers is determined from the radius of curvature of pinned dislocations, leading to the 
conclusion that the matrix is locally strain-hardened. A simple model taking this fact into account is 
proposed to predict the radius of the plastic zone around embedded cylinders and spheres and is compared 
to the experimental data. 

Rrsum~-Le chlorure d'argent contenant des fibres d'alumine ou des microsphrres de verre est utilis6 pour 
6tudier la plasticit6 induite par incompatibilit6 thermique darts la matrice de matrriaux composites 
matrice m&allique. Les dislocations qui en rrsultent sont drcorres dans la matrice ~i temprrature ambiante 
et observres par microscopie optique. La drformation plastique de la matrice autour de ces inclusions se 
manifeste par (i) des rangres de boucles de dislocations prismatiques et/ou (ii) une zone plastique 
contenant des dislocations emmrlres autour des inclusions. A partir du nombre de boucles engendrres par 
les sphrres, une valeur de I00 _.+ 30 K est calculre pour l'intervale de temprrature pendant lequel le 
glissement de boucles prismatiques est oprrationel. La tension dans la zone plastique autour de la fibre 
est ddterminre ~. partir du rayon de courbure de dislocations bloqures, ce qui conduit ~ la conclusion que 
la matrice est localement 6crouie. Un modrle simple tenant compte de ce fait est propos6 pour prrdire 
le rayon de la zone platique autour de cylindres ou de sphdres et compar6 aux donnres exprrimentales. 

Zusammenfassung--Silberchlorid mit Aluminiumoxid Fasern oder Glassmikrokugeln wird als Modellma- 
terial beniitzt, um die thermisch induzierte Matrixplastizit/it in Verbundwerkstoffen mit metallischer 
Matrix zu studieren. Resultierende Matrixversetzungen werden bei Raumtemperatur im Materialinnern 
dekoriert und durch optische Mikroskopie beobachtet. Plastische Verformung der Matrix um die 
Einschlfisse wird in Form von (i) Reihen yon in die Matrix ausgestossenen prismatischen Versetzungsrin- 
gen und/oder (ii) einer plastischen Zone, die Versetzunganh/iufungen um den Einschluss enth/ilt, 
beobachtet. Aus der Zahl der von den Kugeln ausgestossenen Ringen wird das Temperaturinterval, 
w/ihrend dessen Gleitung prismatischer Ringe wirksam ist, als 100 + 30 K ausgerechnet. Die Spannung 
in der plastischen Zone um die Fasern wird aus dem Kriimmungsradius blockierter Versetzungen 
gefunden; aus diesem Resultat wird abgeleitet, dass die Matrix lokal verfestigt ist. Dementsprechend wird 
ein einfaches Model vorgeschlagen, das den Radius der plastischen Zone um Zylinder und Kugeln 
vorhersagt, und mit den experimentellen Daten verglichen. 

1. INTRODUCTION 

When the coefficients of  thermal expansion (CTE) of  
the two phases of  a composite are different, internal 
stresses are generated in the vicinity of  the reinforce- 
ment  upon temperature change. It is well documented 
that, if  these thermal stresses are high enough, dis- 
locations are produced in metal matrix composites 
(MMCs)  near fibers, whiskers or particles. This 
phenomenon has been studied experimentally using 
etch pits [1, 2], slip lines [3] as well as transmission 
electron microscopy (TEM). This latter technique 
has revealed a variety of  dislocation configurations 
surrounding the reinforcing phase, including long 

dislocations along fibers [4-6], dislocations emitted at 
whisker ends and corners [7, 8] as well as various 
loops and tangles [9, 10]. There are shortcomings to 
these techniques, however, which impair complete 
observation of  the actual dislocation configurations 
in reinforced metals. All these methods examine 
material in the immediate vicinity of  a free surface, 
which perturbs both the dislocations and the stress 
state around the reinforcing phase. With T E M  
samples, furthermore, the observable volume in a 
given specimen is very small in comparison to even 
the smallest reinforcements of  practical interest 
(whiskers), both in terms of  thickness and of  width 
of  the electron-transparent area of  observation. This 
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restricts for example the observation of long dis- 
locations or of entire rows of punched dislocations. 

In the present investigation, we use silver chloride 
as a model material for the matrix of MMCs to 
alleviate these shortcomings. It is amply documented 
that this transparent salt exhibits substantial ductility 
(up to 400% tensile elongation [11]) resulting from 
dislocation mechanisms which are in most respects 
similar to those found in metals [12]. The glide 
direction of silver chloride is (110)  (corresponding 
to the most closely packed rows of ions of same sign) 
with glide planes {110} and {001} at ambient tem- 
perature, resulting in pencil glide. Single dislocations 
can be decorated at room temperature within the 
bulk of silver chloride or silver bromide by decoration 
with metallic silver, making them visible in high 
resolution transmission optical microscopy [13-16]. 
Decoration depths of 30/~m can be reached by simple 
exposure to actinic light, a depth which can be 
extended to millimeters by the simultaneous use of a 
pulsed electrical field and pulsed light exposure 
[17-18]. Using plates of this material sufficiently thin 
for examination in the transmission optical micro- 
scope (up to dimensions on the order of millimeters), 
the whole sample can be observed. Consequently, 
decorated dislocations can be observed within un- 
disturbed volumes as large as many square centi- 
meters by over 30 #m, allowing the investigation of 
dislocations emitted along continuous fibers of large 
diameter or large particles. This technique has fallen 
out of fashion over the past decades and has its 
limitations (principally its low resolution), but the use 
of "transparent metals", as silver halides have been 
named, presents clear advantages over alternative 
techniques mentioned above for the study of matrix 
plastic deformation in MMCs. 

In what follows, we present direct experimental 
evidence of dislocation emission around spherical and 
cylindrical reinforcing phases embedded in silver 
chloride. We then derive simple expressions predict- 
ing the size of the plastic zone that results in a 
strain-hardening matrix around these reinforcements, 
and compare our predictions with experimental data. 

2. EXPERIMENTAL 

Our experimental techniques closely follow 
ones established by Mitchell and co-workers 
[13-14, 19-23]. 99.999% pure silver chloride pur- 
chased from Engelhard was purified by melting under 
dry nitrogen and bubbling 99.9% pure chlorine, then 
degassed by bubbling dry nitrogen and finally filtered 
through a capillary to eliminate any particles, silver 
oxide or colloidal silver left in the melt. To increase 
its photosensitivity, the silver chloride was then 
doped with 500 ppm 99.999% pure cuprous chloride, 
by melting both compounds under nitrogen and 
thoroughly mixing them in the melt. Throughout 
all operations involving the reactive molten silver 
chloride, great care was taken to exclude contami- 

nation by oxygen from air or by foreign ions from the 
Pyrex and quartz glassware used, which was therefore 
aged in boiling nitric acid and thoroughly rinsed in 
distilled water prior to each experiment. 

Two types of reinforcements were used: alumina 
fibers with a diameter of 3/~m (produced and 
donated by Imperial Chemical Industries, of trade 
name Safimax TM and composed of 95% A1203, 5% 
SiO2) and glass microspheres with a diameter range 
of 1-5 #m purchased from MoSci Corp. (borosilicate 
Coming glass 7070). The reinforcement was spread 
on a quartz plate on which 100/~m thick quartz 
spacers were placed. Purified and doped silver chlor- 
ide was melted under dry nitrogen and poured onto 
the quartz plate preheated to about 823 K, which was 
then immediately topped by another hot quartz plate. 
The two plates were moved with respect to each 
other, thus creating turbulent flow within the melt 
which entrained the reinforcement from the surface 
of the plates to the bulk of the melt. The composite 
silver halide plate thus formed was directionally 
solidified at a speed of 10 #m/s. After separation 
from the plates in distilled water, the composite was 
cut into smaller samples which were annealed in dry 
nitrogen for 2 h at 673 K and rapidly cooled down to 
room temperature at about 1 K/s. Each sample was 
then exposed for a few hours to the unfiltered light of 
a stroboscope (model 510AL, Electronic Brazing 
Company) with the following characteristics: Xe 
tube, 60 flashes/s, integrated illuminance per flash: 
35 lux/s. Immediately thereafter, the decorated sub- 
structure was observed in transmitted light and 
recorded photographically using an Olympus metal- 
lurgical microscope with a 100 x dry lens and a short 
working distance condenser of aperture 0.65. 

3. RESULTS 

Density differences between the melt and the re- 
inforcement did not induce any separation of the two 
phases in the time needed for solidification. Even with 
the smallest glass spheres, no particle pushing by the 
solidification front was observed. In all cases, bubbles 
about a millimeter in diameter formed at the solid- 
liquid interface during solidification, which could not 
be eliminated even when the sample was solidified 
vertically. They were probably due to shrinkage since 
the silver chloride was free of dissolved chlorine after 
the degassing operation. Being relatively few in num- 
ber, they did not hinder the observation of the 
microstructure. 

After annealing and quenching, all the sensitized 
samples showed small black surface precipitates 
which were due to the copper present in the samples, 
since non-sensitized control samples did not exhibit 
such a behavior. These precipitates were purely 
limited to the surface and did not seem to interfere at 
all with the microstructure in the bulk. Pulsed light 
of high intensity from the stroboscope was found to 
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Fig. 1. Decorated prismatic loops in AgC1 punched by a 
glass sphere. Unresolved tangles are visible in the directions 

where no loops were emitted. 

yield better decoration of the samples than continu- 
ous exposure to the light of a mercury vapor lamp 
used by some previous investigators. In all samples, 
random precipitation of silver took place within the 
silver chloride upon exposure to actinic light, result- 
ing in the "fog" visible in all figures. Grain bound- 
aries and subgrain boundaries were always decorated 
first; when the samples were properly decorated and 
only slightly deformed, individual dislocations within 
the subgrains could be resolved. In most samples, 
decoration was found to fade in a matter of hours or 
days, more quickly so when the samples were exposed 
to the intense light of the microscope. Subsequent 
exposure to the stroboscopic light did not restore the 
decoration but rather increased the background fog. 

3. I. Samples with spheres 

High dislocations densities were observed in the 
vicinity of the glass spheres. The configuration of the 
resulting plastic zone surrounding the spheres fell in 
two main categories. In the first, the dislocations were 
clearly resolved as trains of prismatic loops emanat- 
ing from the spheres along crystallographic direc- 
tions. Unresolved tangles were almost always visible, 

Fig. 3. Glass sphere in AgC1 matrix surrounded by an 
irregular zone of unresolved, decorated dislocations and 

having emitted prismatic loops. 

but only along the sides where no loops were punched 
(Fig. 1). In the other category, the plastic zone 
was composed of unresolved dislocation tangles 
surrounding the inclusion as a continuous shell of 
variable regularity (Fig. 2), on occasions coexisting 
with one or two trains of emitted loops (Fig. 3). In 
some cases of intermediate character in reference to 
these two types (Fig. 4), an irregular plastic zone was 
observed featuring lobes that extended along the glide 
directions (these were determined from other spheres 
having punched out loops within the same subgrain). 

3.2. Samples with fibers 

The dislocation density was found to be signifi- 
cantly higher close to the fibers than elsewhere in the 
matrix. Figure 5 shows dislocation tangles along the 
sides of a long fiber. Some of the dislocations have 
been pinned and are bowed due to the local stress 
field. In most cases, however, single dislocations 
could not be resolved within the plastic zone sur- 
rounding the fibers. The plastic zone could be seen as 
a dark cylindrical region of precipitated silver around 
the fiber. This region usually ended abruptly and was 
very often separated from the undeformed matrix by 
decorated subgrain boundaries. 

Fig. 2. Unresolved" dislocations forming a spherical plastic Fig. 4. Glass spheres in AgCI matrix surrounded by tangled, 
zone around glass spheres embeded in AgC1. decorated dislocations in a plastic zone forming lobes. 
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Fig. 5. Decorated, pinned dislocations in the plastic zone 
surrounding an alumina fiber in an AgCI matrix. Due to the 
stress from the fiber, some dislocations are bowed. The fiber 
is out of focus, being a few microns off the image plane. 

In numerous cases, rows of prismatic loops were 
seen emanating from the ends of the fibers. In Fig. 6, 
a train of loops is shown which bursts through a 
subgrain boundary and continues in the next sub- 
grain with a slightly different orientation, reflecting 
the change in crystallographic orientation between 
the two subgrains. Partially resolved tangles are also 
visible along the sides of the same fiber. Figure 7 
shows a fiber surrounded by a dark plastic zone of 
unresolved dislocations. Many such cases were ob- 
served, where the plastic zone was larger at the ends 
of a fiber than as its middle. Due to the directional 
solidification of the samples, very large grains on the 
order of a cm 2 were formed. Within these grains, 
subgrain boundaries--visible as dark continuous 
lines in Figs l, 2, 6 and 7--were always associated 
with regions of the sample containing fibers. 

4. THEORY 

The formation of a plastic zone around an in- 
clusion embedded in metal when the misfit strain is 

Fig. 6. Decorated rows of prismatic loops punched from a 
short alumina fiber in an AgC1 matrix. After bursting 
through a subgrain boundary (dark continuous line), the 
loops change orientation in the second subgrain. Partially 
resolved dislocation tangles are also decorated around the 

fiber. 

Fig. 7. Peanut-shaped plastic zone around an alumina fiber 
embedded in AgCI. 

pure dilatation has been modelled by various authors 
using a continuum approach [3, 8, 24-32]. In what 
follows, we propose an alternative method to calcu- 
late the size of the plastic zone surrounding inclusions 
of simple misfitting shape, namely spheres and cylin- 
ders embedded in a monocrystalline, elastically 
isotropic single-phase matrix. Our approach uses 
continuum plasticity as well, but takes into account 
the influence of dislocation density on flow stress. 

Hill [32] solved the problem of the expansion of a 
cylindrical or spherical cavity into an infinite, 
isotropic, linear elastic, non work hardening plastic 
matrix from zero radius to end radius a. Assuming a 
Tresca yield criterion in the matrix, the radius of the 
plastic zone cc and cs for a cylinder and sphere of 
respective radius ac and a s are respectively given as 

cc=a~'( 2"E "~m 
( 5 -  4v) '%J ' (la) 

t' E "]~/3 
(lb) cs = as ' \3 . (1  - v).ay/ 

where E is the matrix elastic modulus, v the matrix 
Poissons ratio and ay the matrix yield tensile stress. 

These results can be used to find the plastic zone 
radius due to the differential contraction of an infinite 
matrix around an inclusion. Consider a sphere or 
an infinitely long cylinder embedded in an infinite 
matrix which deforms plastically. Upon cooling from 
elevated temperature, the matrix is first able to 
alleviate misfit stresses that result from the differential 
thermal contraction of the reinforcement by diffusion 
or other creep mechanisms. These mechanisms will 
operate as long as their rate is on a par with that of 
cooling. At low temperatures, creep cannot relieve 
thermal stresses, which build up and induce plastic 
deformation by slip in the matrix that surrounds the 
inclusion. The transition from creep to slip is assumed 
to take place at a single temperature To, above which 
all thermal mismatch strains are relieved by diffusion, 
and below which dislocations form at the interface 
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Fig. 8. Fictitious hole expanded from zero radius to radius 
a producing a plastic zone of radius c and a matrix 
displacement of Ar at the surface of the inclusion of radius 

r. Cylindrical or spherical case. 

and glide within the matrix to relieve thermal mis- 
match stresses higher than the yield stress of the 
matrix. Thus, upon cooling from a high annealing 
temperature T a to a lower temperature T 0, stresses 
will be relieved first by diffusion and/or creep at high 
temperatures until temperature T¢ is reached. At 
this temperature, the inclusion and the matrix are 
assumed to be stress-free. Upon further cooling to To, 
elastic stresses build up in both phases until the 
matrix yield stress is reached and slip begins in the 
matrix. It is assumed that the stress for nucleation of 
dislocations at the interface is not limiting the number 
of dislocations, as reported by Brown and Woolhouse 
[33] for two-phase materials with incoherent inter- 
faces. Given the relatively low yield stress of silver 
halides (and most metals) and the high modulus of 
the inclusions of interest, the latter is assumed to be 
perfectly rigid. The total mismatch strain £m between 
matrix and inclusion to be relieved by slip is 

Em = A~ A T, (2) 

where 

AT = T ¢ -  T O (3) 

and Ae is the absolute value of the difference of CTE 
between matrix and inclusion. The CTEs are assumed 
to be isotropic and independent of the temperature. 
The displacement Ar of the matrix due to the presence 
of a n inclusion of radius r at its surface is then 
known, and given as 

Ar = A0~. AT. r. (4) 

By using equation (1), the radius of a fictitious 
cylindrical or spherical hole of radius a~ and as, 
respectively, which would produce in an unreinforced 
matrix a displacement Ar at the inclusion surface can 
be calculated (Fig. 8). Since the stress and strain state, 
as well as strain history of the matrix are identical for 

these two cases of a thermally mismatching inclusion 
and a growing hole, the size of the plastic zone can 
be found by deriving ac or a~, and using equation (1). 
The radii a¢ and as are most easily derived from 
conservation of volume, neglecting the elastic com- 
pressive strain within the inclusion volume in the 
growing hole configuration. Neglecting higher orders 
of Ar, one obtains for the cylinder and the sphere, 
respectively 

7t. a~ = 2.7r .r e. Ar, (5a) 

4~.rc.a s3=4.Tz'r~.Ar. (5b) 

Inserting equations (5a) and (5b) into equations 
(1 a) and (1 b) respectively and taking equation (4) into 
account, the radius of the plastic zone produced by 
differential thermal contraction of the matrix around 
a cylinder (co) and a sphere (c~) is respectively given 
by 

[4. Act. AT" E'~ 1:2 
c ¢ = r  c . /  . . . . .  / , (6a) 

~X (5 - -  4t))" cry /] 

/' Aoc " AT" E'~ 1/3 
c~ = r s • . . . .  (6b) L(I-v) cry) 

assuming that E, v and Cry are isotropic and tempera- 
ture independent. 

Equations (6a) and (6b) predict the extent of the 
plastic zone in a matrix showing no strain-hardening. 
From data presented below and measurements on 
pure silver chloride [34-36], however, it is known that 
this material exhibits strain-hardening, as most 
metals do. Use of macroscopic relations giving flow 
stress as a function of strain history is inappropriate 
given the microscopic dimensions of plastic flow. We 
assume that the matrix is monocrystalline, elastically 
isotropic and single-phased, and make use of the 
more "microscopic" relationship between dislocation 
density p and flow stress of the matrix Zy given by the 
classical equation [37] 

Zy = Zy0 + AGb ~ (7) 

where zy 0 is the intrinsic flow stress of the matrix, G its 
shear modulus, b the Burgers vector of dislocations in 
the matrix and the strain-hardening constant A has a 
value between 0.3 and 0,6 for metals [38-43] and 
0.4 for NaC1 [44]. We assume for the case of 
interest here---namely the formation of a cylindrical 
or spherical plastic zone of tangled dislocations sur- 
rounding the inclusion--that the impeding effect of 
one dislocation upon motion of another can be 
represented by equation (7). The same relationship 
was used by Brown and Stobbs [45] to model strain- 
hardening in the plastic zone around submicroscopic 
particles in a deformed copper-silica system. We 
make the added assumptions that flow stress and 
dislocation density are uniform within the plastic 
zone and that the plastic zone size always increases 
with increasing AT. To calculate the extent of the 
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Fig. 9. (a, b) Schematic of prismatic dislocation loops 
punched in the ( l l 0 )  directions of a f.c.c, lattice from a 
sphere (a) and a cylinder (b). The shaded volumes represent 

the intersection of adjacent glide systems. 

plastic zone around inclusions, we can then use 
equation (6) derived above with 

O'y ~--" 2"Cy. (8) 

The dislocation density p is estimated as the total 
length of punched prismatic dislocation loops that 
are needed to relieve the thermal mismatch strains 
in simple configurations divided by the plastic 
zone volume. For the sphere, we adopt' the model 
described by Hull and Bacon [46] wherein it is 
assumed that loops are punched out along all 12 
(110)  directions on glide cylinders intersecting the 
sphere along circles where the resolved shear stress 
is maximum [Fig. 9(a)]; the glide cylinders have then 
a diameter of x/2r~. For the cylinder, it is assumed 
that the axis of the cylinder is aligned along one of 
the (111 ) directions and that infinitely long loops 
are emitted in the six (110)  directions. We assume 
that, as with the sphere, these loops are emitted 
where the resolved shear stress is maximum, resulting 
in a loop width of x/2r~ [Fig. 9(b)]. Deviation of 
the particular fiber orientation from ( 111 ) increase 
the number of loops if no Burgers vectors perpen- 
dicular to the fiber axis is available. For this 
reason, and because a series of loops of same width 
but shorter length might be generated instead, the 
present estimate is most likely a lower bound for 

the actual dislocation density around a cylindrical 
inclusion. 

The number of dislocation loops in the plastic zone 
around the cylinder n c and the sphere n, is now 
obtained by dividing the volume of the material to be 
displaced to relieve thermal mismatch by the volume 
of material removed by each loop 

2"~ 'rc 'Act 'AT 'r¢  x / ~ .~ ' r c .Ac t .AT  (9a) 
n~ = x / ~ .  r c" b = b ' 

4 .1r . r2 .A~ .AT . r  s 8.r,.Act.AT 
n~ = - (9b) 

.r~.b b 
rc 2 

Dividing the total dislocation length by the volume 
of the plastic zone, the dislocation densities around a 
cylinder and a sphere are then respectively 

2.no 2.x/~" Act .AT (lOa) 
P~=rr ' (c~-r~)  = b ' r ~ ' ( x c -  1) ' 

3"n,'r s 6' x/~'A~t "AT (10b) 
Ps=2 .x /~ . ( c3 - - r3 )  = b ' r~ ' (Xs -  1) 

where 

--(Cc~ 2, (l la) 
xo - \ ~ /  

- ( c s ~  3 (l lb) 
x, - \~i. 

Inserting equations (7), (8) and (10) into equation 
(6) leads to implicit equations for the radius of the 
plastic zone in a strain-hardening matrix for the 
cylinder and the sphere respectively 

,ryo + A .G . /2"x / -2"  Aot " A T ' b  
~[ r~'(x¢ -- 1) 

2"A~ " A T ' E  
= 0, (12a) 

(5 - -4v) 'x¢ 

A "G " / 6 '  x/~" A~ " A T ' b  
"~y0 

+ 
rr(x~- 1) 

Act " AT" E 
= 0. (lZb) 

2-(1 - v ) ' x s  

After some algebraic manipulations, these two 
equations can be transformed into cubic equations in 
x~ and xs respectively as a function of A~, AT, G, E, 
v, zy0, b, A and r~ or rs respectively. For the particular 
cases explored numerically here (AgCI/AI203, 
AgC1/glass and A1/SiC), these equations generally 
yield three roots, two of which are extraneous. With 
the strain-hardening constant A equal to zero--corre- 
sponding to a non strain-hardening matrix--the 
cubic equation yields an extraneous root x = 1 and a 
double root equal to the value found using equation 
(6) with try =2~y 0 (reference value). With A > 0  
(i.e. for a strain-hardening matrix), the smallest 
root is still equal to 1 and is discarded since it is non- 
physical. Of the other two roots, one is larger than the 
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Fig. 10. Plastic zone radius around a SiC cylinder (c) and 
sphere (s) in a 99.5% aluminium matrix after a temperature 
change of 200 K. Materials constants are listed in Table 1. 
Full curves: strain-hardening matrix [equation (12)]. Dotted 

curves: non strain-hardening matrix [equation (6)]. 

reference value and hence physically absurd, the 
other is smaller than the reference value and therefore 
retained. 

The critical volume fraction v* of inclusions at 
which their plastic zone are touching is then for the 
cylinders and spheres respectively 

v* =--,Pc (13a) 
Xc 

v* ___,Ps (13b) 
Xs 

where Pc and P~ are the packing ratios for cylinders 
and spheres respectively. Since equation (1) was 
developed for a single inclusion in an infinite matrix, 
the volume fractions derived above are larger than 
the upper limit for the range of validity of equation 
(12). 

Results from this model for SiC spheres and cylin- 
ders of radius 1.5/~m in a 99.5% pure aluminium 
matrix for an arbitrary value for AT of 200 K are 
given in Fig. 10, using CTE value for SiC of 
3.4-10-6K -~ and constants given in Table 1. The 

Table 1. Thermomechanical parameters of matrix materials 
(high purity silver chloride and 99.5% aluminium) 

Parameter Unit AgCl A1 

CTE (K ~) 3'10 s 2.32.10-5 
E (GPa) 26 62 
G (GPa) 6.9 23 
v (--) 0.343 0.33 
b (rim) 0.384 0.286 
zy 0 (MPa) 0.5 8.8 
A (--) 0.625 
Reference [67, 71] [43, 72] 

choice of slightly alloyed aluminium for this example 
rather than the pure metal was dictated by the fact 
that, even for the thermal strain rates achievable by 
quenching, pure aluminium deforms by slip only at 
temperatures below 300 K. With the latter metal, the 
effect of work hardening on plastic zone radius is 
even more pronounced for the same value of AT (in 
a quench from ambient to liquid nitrogen tempera- 
tures for example) due to its lower value of zy0. 

The plastic zone radius that results from use of 
equation (6) with try = 2Zy for a non strain-hardening 
matrix is given in the same figure. The critical volume 
fraction and dislocation density are given in Table 2 
for cylinders and spheres under the same conditions 
as above. Also listed in Table 2 is the increase of yield 
stress in shear due to the dislocations present in the 
matrix [equation (7)]. Due to strain-hardening, the 
value of the yield stress in the plastic zone around 
cylinders and spheres is respectively over 1.5 and 2 
times the intrinsic flow stress measured by Hansen 
[43]. 

5. D I S C U S S I O N  

A large body of literature exists on dislocation 
nucleation and geometry around submicroscopic par- 
ticles in deformed metals, e.g. [33, 45, 47-51]. While 
very detailed TEM observations and mechanical test 
results have shed considerable light on the dislocation 
mechanisms operative in such systems, these results 
are not directly applicable to the present problem 
because the volume of the second phase in the present 
study is typically more than three orders of magni- 
tude larger. The completion in an unimpeded manner 
of such processes as double cross-slip [48] are much 
less probable with large inclusions because the length 
of the involved dislocations is much larger. The 
probability of interaction before completion of the 
process is therefore much higher and the activation 
energy is increased by an order of magnitude. 

Table 2, Packing ratio, critical volume ratio lequation (13)], dislocation density [equation 
(10)] and increase of yield stress in shear [equation (7)] for different arrays of silicon 
carbide spheres and cylinders of radius 1.5 #m in a strain-hardening 99.5% aluminium 

matrix submitted to a change of temperature AT = 200 K 

Array P v* (%) p (m 2) AGbx/p (Pa) 

Sphere f.c.c, x/2n/6 6.1 5.9.1012 10.106 
b.c.c. ~3rc/8 5.6 5.9. l0 t2 10. l06 
Cubic rr/6 4.3 5.9.1012 10' 106 

Cylinder Hexagonal ~/3rc/6 5.1 1.7.1012 5.4-106 
Square n/4 4.4 1.7.10 ~2 5.4.106 
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Fig. 11. Total number of prismatic dislocations loops 
punched by glass spheres in AgCI as a function of the sphere 
diameter. Open squares: single row of loops. Solid squares: 
double rows of loops. Lines: calculations from equation (18) 

for different values of AT. 

Another important difference is that most of the 
earlier studies investigated particles submitted to 
shear whereas in the present study the strains are 
purely dilatational. Finally, the interface in the pre- 
sent case is incoherent, while many earlier investi- 
gations studied systems with coherent interfaces; this 
has a large effect on the energy considerations in- 
volved in such processes as prismatic punching [33]. 

While not directly transposable to the problem 
treated in this study, these previous investigations 
indicate however that the total dislocation density we 
assumed to be generated at the reinforcement is most 
likely a rough approximation• This relative crudeness 
is justified by the absence of detailed information on 
the specifics of dislocation emission in the tangled 
regions by large incoherent particles and the simplic- 
ity of the resulting expressions [equation (12)] for the 
plastic zone radius. 

In what follows, we discuss the geometry of dislo- 
cations forming the plastic zone around microspheres 
and fibers. We then present experimental evidence of 
strain-hardening in the plastic zone surrounding the 
fibers and derive the value of AT from the number of 
loops punched by microspheres. We finally compare 
the predictions of the simple model presented above 
with the experimentally determined radius of the 
plastic zone around fibers and spheres. 

5. I. Dislocation around spherical inclusions 

Plastic zones of irregular size, an example of which 
is given in Fig. 4, present a mode of strain relief 
intermediate between prismatic loop trains punched 
along crystallographic directions and an isotropic 
spherical shell of plastically deformed matrix. It 
seems that prismatic loops were punched out along 
crystallographic directions but became thereafter 
entangled. TEM investigations to date have gener- 
ated similar observations on particles over an order 
of magnitude smaller [47, 52]. This suggests that the 
spherical plastic shells observed around more than 
half of  the embedded particles (Fig. 2)--similar to 

spherical zones of tangled dislocations around sub- 
microscopic particles reported by Kinsman et al. 
[53]--resulted from punched loops which were entan- 
gled early in the punching process. This lends some 
credence to our estimation of the final dislocation 
density in the regular spherical plastic zones modelled 
above. 

When more than one row of loops were found, they 
were very often at opposite sides of the spheres. No 
glass sphere was found to have punched loops on two 
adjacent glide cylinders without the presence of a 
zone of tangled dislocations between the punched 
loops and the particle. One of the rows was almost 
invariably much shorter than the other. This could be 
due to interactions between loops in the intersection 
of the glide cylinders close to the sphere [shaded area 
in Fig. 9(a)]. As pointed out by Johnson and Lee [54], 
it is energetically possible for two loops on adjacent 
cylinders in an f.c.c, crystal to interact and form a 
sessile product dislocation. This is more likely to 
happen the larger the particle, since the intersection 
volume between glide cylinders increases in size. 
Thus, for the large spheres investigated here, plastic 
zones of tangled dislocations form whenever two 
adjacent glide cylinders are active. We therefore 
expect plastic deformation of the matrix around 
inclusions in the form of a shell of tangled dislo- 
cations to be more prevalent over rows of prismatic 
loops in MMCs compared to dispersion hardened 
metals because inclusion dimensions are much larger 
in the former materials. 

The intermediate case illustrated in Fig. 3 could 
be due to a first stage of relaxation where the active 
glide cylinders were not adjacent, followed by the 
activation of additional glide cylinders leading to 
tangles. Similar TEM micrographs on submicro- 
scopic particles have been published by Makenas and 
Birnbaum [55]. 

Figure 11 shows the total number of punched 
prismatic loops as a function of the sphere diameter, 
for rows of loops which were not separated from the 
sphere by any tangled dislocations. There is no 
systematic difference in the total number of  loops 
emitted by spheres with one or two rows of  loops, i.e. 
the number of loops in single rows is on the average 
twice that for double rows for a given sphere diam- 
eter. This suggests that one row of loops can relax the 
sphere as efficiently as two on each side and in turn 
implies that short range diffusion or glide occurs in 
the vicinity of the interface. The observation that with 
these spheres trains of loops were emitted only along 
one direction is an indication that nucleation of loops 
in other directions is perturbed by emission of the first 
row of dislocations. However, with precipitates of 
silver in the matrix much smaller than the glass 
spheres, we observed dislocation punched along 
most or all crystallographic directions, similar to 
what has been reported by various investigators 
in silver chloride [23, 56] and metals [57-60]. This 
indicates that the mechanisms for relief of thermal 
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Fig. 12. Stress of pinned dislocations as calculated from 
equation (12) in the plastic zone surrounding alumina fibers 
in an AgC1 matrix (see Fig. 5) as a function of radial 
distance from the interface. The various symbols represent 
different fibers. The lower horizontal line is the value of the 
microyield stress in shear as measured by other investigators 

[67q]8]. 

mismatch depend on inclusion size. Extrapolation to 
MMCs of data gathered with dispersion hardened 
metals will therefore not always be valid. 

5.2. Dislocations around cylindrical inclusions 

Childs and Slifkin [16] published a micrograph of 
a 200 ktm long dislocation in silver chloride pinned at 
many places and bowed due to an external stress. Our 
observations of pinned, bowed dislocations close 
to fibers are similar. The same authors have also 
published two micrographs of punched trains of 
dislocation loops at elongated inclusions in silver 
chloride. In both their and our work, trains of 
prismatic dislocation loops were found to emanate 
from the fiber ends. One of their micrographs features 
loops of dislocations punched along the inclusion 
length as well, which we only observed in very few 
instances. Relaxation of radial mismatch strains was 
found in all other fibers to result in the formation 
of a cylindrical plastic zone containing tangled dis- 
locations. This observation is to be expected in view 
of the fact that unless the fiber axis is perfectly 
perpendicular to the glide directions of emitted pris- 
matic loops, significant interference will result be- 
tween emitted dislocations of differing Burgers 
vector. Even when the fiber is optimally oriented [as 
in Fig. 9(b)], loops on overlapping glide directions 
will be able to form sessile products as in the case of 
spherical inclusions. One would therefore expect that 
the total emitted dislocation length in the plastic zone 
surrounding the fibers is estimated with reasonable 
accuracy as that resulting from elongated punched 
prismatic loops [equation (9a)] since the mechanism 
of emission is likely to be similar, and since dis- 
locations are of a length larger than the fiber diam- 
eter, as exemplified in Fig. 5. 

With short fibers, the peanut-shaped plastic zones 
we observed (Fig. 7) are similar to those predicted by 
Dutta et al, [31] using finite element analysis for an 
elastic, perfectly plastic matrix. These confirm that 

the dark unresolved regions found surrounding the 
glass spheres and the alumina fibers are indeed zones 
of plastically deformed matrix. 

5.3. Flow stress of  the dislocations 

Mitchell [56] decorated dislocations in silver chlor- 
ide under load which were formed by an indenter 
and also observed bowed dislocations pinned at 
their ends, as did Childs and Slifkin [16]. Careful 
examination of long dislocations in the plastic zone 
surrounding fibers in this investigation reveals that, in 
several areas, the dislocations were similarly pinned 
and bowed due to the local stress field (Fig. 5). Since 
they were in the vast majority of cases found to be 
bowed away from the fiber on both of its sides, the 
stress to which they were subjected can be assumed 
to emanate from the fiber, rather than from some 
unknown extraneous source. This local elastic stress 
is unable to move these particular dislocations any 
further and is therefore lower than the local yield 
stress in shear of the matrix. Brown and Stobbs [45] 
also observed around submicroscopic silica particles 
in deformed copper that the dislocations in the plastic 
zone had high curvature compatible with an in- 
creased local flow stress. 

Assuming that the pinned dislocations formed 
a segment of a circle, their radius of curvature R 
was calculated by measuring on enlarged micro- 
graphs the distance between the anchor points L as 
well as the maximum deflection H from the line 
running through the two anchor points, using the 
relationship [61] 

L 2 H 
R = -t (14) 

8 .H  2 

from which it is possible to calculate the local stress 
a [62] 

G.b 

4 . n . R . ( 1 - v )  

× { 2 -  1 + [1 - 2.(3 - 4 cos:/~)].ln(R~-~)} (15) 

where G is the matrix shear modulus, v its Poisson's 
ratio, R0 the core distance of the dislocation and/~ the 
angle between the dislocation line and the Burgers 
vector. 

The angle fl is unknown and the square of its cosine 
is taken as 0.5 (the average of cos2~). The core 
distance is taken as 33% the value of the Burgers 
vector, as determined by Puls and So [63] for sodium 
chloride. These two parameters have little influence 
on the numerical result. The Burgers vector was 
assumed to be along { 110}, the main slip direction in 
silver chloride [12]. The Poisson's ratio was calculated 
as 0.343 from an average of the values of elastic 
constants determined by three investigators [64-66]; 
other materials data are listed in Table 1. The stresses 
for pinned bowed dislocations such as the ones visible 
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Fig. 13. Radius of plastic zone surrounding a sphere in an 
AgC1 matrix as a function of the radius of the corresponding 
sphere. Squares: experimental data. Solid curves: strain- 
hardening matrix with different values of [equation (12b)]. 
Dashed curve: nonstrain-hardening matrix [equation (6b)]. 

in Fig. 5 are plotted in Fig. 12. It is found that the 
local stress within the plastic region is independent of 
the distance from the fiber and varies between 
0.6 MPa and 1.45 MPa. The lower bound is in good 
agreement with a value of 0.5 MPa for the microyield 
shear stress of pure silver chloride measured at room 
temperature by other investigators [67, 68]. Haasen 
and Skrotsky [68] also found that the presence of 300 
and 500 ppm of calcium chloride in the matrix hardly 
changed the value of the critical resolved shear stress. 
This indicates that the 500 ppm of cuprous chloride 
present in the sample used in this investigation should 
have very little effect on the yield stress of silver 
chloride, especially since the monovalent cuprous 
ions are expected to interfere less with dislocations 
than the divalent calcium ions investigated by Haasen 
and Skrotsky [68]. In a matrix showing no strain- 
hardening, one would expect the stress in the plastic 
zone to be constant and equal to the microyield 
stress, i.e. around 0.5 MPa. The data shown in Fig. 12 
thus indicate that the matrix is strain hardened, as 
found by many authors with silver chloride in tension 
([34-36, 68-69]). 

5.4. Determination of A T 

Each punched-out prismatic loop of Burgers vector 
b emitted by a sphere of diameter d~ relaxes the 
thermal mismatch in the direction of emission of the 
loops by a strain El approximated by 

b 
(16) E l ~ - -  d~ 

assuming that the emitted loop has the same diameter 
as the sphere (as observed experimentally) and 
neglecting strains in the direction where no loops are 
emitted. The total mismatch strain Em between sphere 
and matrix is given by equation (2). Assuming that 
this mismatch is completely relaxed along one direc- 

tion by punching of coaxial prismatic loops, the total 
number of loops ns is equal to 

£rn 
n s = - - .  (17) 

E 1 

Inserting equations (2) and (16) into (17) yields 

A T =  ns'b 
d~.A~" (18) 

The right hand side of equation (18) would be 
divided by a factor 2 if it were assumed that loops can 
be punched out along all 12 {I10} directions as 
described by Hull and Bacon [38]. Figure 11 shows 
the measured number of loops ns as a function of 
sphere diameter. The only spheres considered were 
those that did not exhibit any tangled dislocations 
between the row of loops and the sphere/matrix 
interface in the glide cylinder direction, i.e. for cases 
where relaxation took place solely by prismatic loop 
punching. The best fit line passing through the origin 
gives a value of 100 K for AT using equation [18]; 
lines corresponding to AT values of 70 and 130 K are 
also shown on the same figure. While there is con- 
siderable scatter in the data, it can be safely assumed 
that the value of AT is 100_ 30 K. This translates 
into an homologous temperature Tc/Tm for the onset 
of slip of 0.55 _ 0.04, a result in good agreement with 
the value of 0.50 for sodium chloride given by Frost  
and Ashby [70] for the transition from power law- 
creep to plasticity at the strain rate corresponding to 
the rate of mismatch due to the experimental cooling 
rate of 1 K/s. Since sodium chloride and silver chlor- 
ide are in the same isomechanical group, the homolo- 
gous temperature of transition from one deformation 
mechanism to another is expected to be the same [70]. 
The scatter in Fig. 11 can be due to loops which 
disappeared due to combination with point defects 
produced during quenching, unresolved loops not 
counted, superimposed macroscopic stresses, incom- 
pletely relieved stresses by the sphere, varying loop 
diameter, etc. Most of these factors indicate that AT 
is probably somewhat above 100 K. 

5.5. Comparison of plastic zone around spheres with 
theory 

For the case of spherical plastic zones around 
particles, the plastic zone radius cs is plotted in Fig. 13 
as a function of particle radius r~. Only cases where 
the spheres were isolated from neighbours and where 
the plastic zone was spherical were considered. As 
predicted by equation (6b), there is a linear relation- 
ship between the radius of the sphere and the radius 
of the plastic zone. Using values for silver chloride 
listed in Table 1 and a value of 3.10 -6 K -  1 for the 
CTE of glass, equation (6b) yields an unreasonably 
low value of 18 K for AT compared to the previously 
determined value of 100K. Alternatively, for 
AT = 100 K, equation (6b) yields a value of 5.7 MPa 
for try which corresponds to the stress value measured 
in simple tension on silver chloride by Carnahan et al. 
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[69] at a strain of 2.1 • 10 -4, which is equivalent to Em 
with AT = 100 K [equation (2)]. Their measurements 
were made on annealed samples which all showed 
significant work hardening (ultimate tensile strength 
more than ten times higher than the microyield stress 
of 1 MPa measured by Sprackling [67]), indepen- 
dently of the grain size. Equation (12b), on the other 
hand, gives very good agreement with the data points 
for values of AT = 100 K and A =0.6.  Equation 
(12b) is plotted in Fig. 13 for these values as well as 
for values of A equal to 0.3 and 0.9. For  comparison, 
equation (6b) is also plotted in the same figure with 
AT = 100 K and Cry = 2Zy 0 = 1 MPa. 

5.6. Comparison of plastic zone around fibers with 
theory 

The radius of the plastic zone around fibers was 
also measured for 45 fibers of aspect ratio larger than 
20, in cases where the plastic zone was a cylinder with 
a constant radius. For the fibers used in this investi- 
gation which have a radius of 1.5/~m, the radius of 
the plastic zone was measured as 10.2#m, with a 
standard deviation of 2.7/~m. Using equation (12a) 
with the previously determined values of AT = 100 K 
and A = 0.6, we calculate a plastic zone radius c¢ 
equal to 6.2/~m. Equations (7) and (10a) predict a 
value of 2 MPa for the value of the yield stress in 
shear within the plastic zone. As expected, all 
measured stress values are below this value (Fig. 12). 
Changing the parameters AT and A by a factor 30% 
(i.e. 130 K and 0.42 respectively), yields a value of 
7.6/~m for co, within the interval of confidence of 
measured values. The yield stress in shear of the 
strain hardened matrix becomes 1.4MPa, equal 
to the maximum value measured experimentally 
(Fig. 12), as should be the case. The discrepancy of 
30% with the values determined for the spheres can 
be explained by the fact that equation (12a) does not 
take into account the contribution of the axial mis- 
match to the radial plastic zone, since the model was 
developed for an infinitely long fiber. An alternate 
explanation can be found in the observation that 
subgrain boundaries were generally found to exist at 
the interface separating the plastic zone from the 
unstrained matrix around fibers. A smaller plastic 
zone size should result due to the locally enhanced 
dislocation density at these subgrain boundaries 
within the plastic zone. Equation (6a) yields a value 
of 17.4/~m for c~, far in excess of the range of 
measured values. 

From the above results, it appears that equation 
(12) which takes into account strain-hardening of the 
matrix fit well the experimental data for both spheri- 
cal and cylindrical inclusions, while equation (6) 
which assumes a perfectly plastic matrix fails to do 
so. We conclude that strain-hardening must be taken 
into account in modelling matrix plastic deformation 
around reinforcements in MMCs, and that with 
reinforcement volume fractions below the values 
given by equation (13), equation (12) should yield an 

adequate estimation of plastic zone size in a coarse- 
grained, single-phase matrix. As shown in Fig. 10, 
dislocations punched by the reinforcing phase should 
have a significant effect on the size of the plastic zone 
in pure aluminium. It must however be kept in mind 
that this effect will become less pronounced with 
larger values of Zy 0 typical of alloys. Furthermore, the 
simple calculation presented above loses its validity 
when other obstacles (grain and subgrain boundaries, 
second phases and other reinforcements) also impede 
dislocation motion in the vicinity of the reinforce- 
ment. 

6. CONCLUSIONS 

Silver chloride containing short alumina fibers 
3 t~m in diameter or glass microspheres of diameter 
ranging from 1 to 5 a m  is used as a model material 
for the study of thermally induced dislocations in 
metal matrix composites. The dislocations are deco- 
rated in the bulk matrix at room temperature and 
observed by transmission optical microsopy. Despite 
its lower resolution, this technique complements 
TEM investigations of MMCs because of the large 
volume of undisturbed material that can be investi- 
gated. 

Rows of prismatic loops punched out by glass 
spheres without subsequent entanglement at the 
sphere/matrix interface are found only along one 
direction. The number of loops emitted by glass 
spheres is found to be proportional to the sphere 
diameter, but independent of whether the loops are 
emitted in one or two rows. By counting the emitted 
loops, it is concluded that relaxation by slip occurs 
within a temperature interval of 100 + 30 K, smaller 
that the total temperature difference experienced 
during quenching from annealing temperatures but 
equal to an homologuous transition temperature 
from creep to slip of 0.55, in agreement with Frost 
and Ashby [70]. 

The mechanism of prismatic loop punching at the 
end of a fiber is confirmed and rows of prismatic 
loops at equilibrium extending at large distances from 
fibers in the matrix are observed. 

Plastic zones containing tangled dislocations gener- 
ally result along the sides of the fibers. The stress 
within this plastic zone is measured using the curva- 
ture of pinned dislocations and found to be up to 
thrice the resolved yield stress in shear of the matrix. 
This observation leads to the conclusion that the 
matrix is locally strain hardened. The measured 
dislocation stress is also lower than the yield stress in 
shear calculated from the dislocation density in the 
plastic zone, as it should be. 

Plastic zones formed by tangles of dislocations are 
observed around spheres and fibers. A simple calcu- 
lation of the radii of these plastic zones taking into 
account strain-hardening of the matrix is presented 
and confirmed by experimental data. 
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A P P E N D I X  

a = e q u i v a l e n t  ho le  r a d i u s  
A = s t r a i n - h a r d e n i n g  c o n s t a n t  
b = m a t r i x  B u r g e r s  vec to r  
c = p las t ic  zone  r a d i u s  
d = inc lus ion  d i a m e t e r  
E = m a t r i x  elast ic  m o d u l u s  
G = m a t r i x  shea r  m o d u l u s  
H = m a x i m u m  def lec t ion  o f  a b o w e d  d i s l o c a t i o n  f r o m  

the  line r u n n i n g  be tween  its a n c h o r  p o i n t s  
L = d i s t ance  be tween  the  a n c h o r  po in t s  o f  a b o w e d  

d i s loca t i on  
n = d i s loca t i on  n u m b e r  a r o u n d  a n  inc lus ion  
P = p a c k i n g  r a t io  
r = inc lus ion  r a d i u s  

R = r a d i u s  o f  c u r v a t u r e  o f  a b o w e d  d i s loca t i on  
R0 = d i s l o c a t i o n  co re  d i s t ance  
T a = a n n e a l i n g  t e m p e r a t u r e  
Tc = c reep /g l ide  t r a n s i t i o n  t e m p e r a t u r e  o f  the  m a t r i x  

T m = me l t ing  t e m p e r a t u r e  o f  the  m a t r i x  

T o = o b s e r v a t i o n  t e m p e r a t u r e  
v * =  cr i t ica l  v o l u m e  f r ac t i on  o f  inc lus ions  
x = d imens ion less  p las t ic  zone  p a r a m e t e r  

= ang le  be tween  d i s loca t ion  l ine a n d  its Bu rge r s  
vec to r  

Act = C T E  dif ference be tween  m a t r i x  a n d  inc lus ion  
Ar  = m a t r i x  d i s p l a c e m e n t  a t  the  in te r face  

A T  = t e m p e r a t u r e  in te rva l  w h e r e  slip is ope ra t ive  
E~ = s t ra in  rel ieved b y  a p r i s m a t i c  l oop  
~m = m a t r i x  s ta in  d u e  to  inc lus ion  
v = m a t r i x  P o i s s o n ' s  r a t io  
p = m a t r i x  d i s loca t ion  dens i ty  
tr = stress 

try = m a t r i x  tensile yield stress 
-Cy = m a t r i x  shea r  f low stress 

Zy0 = m a t r i x  in t r ins ic  shea r  f low stress  

Subscript 
c = cy l inde r  o r  f iber 
s = sphere  


