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Abstract

A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of
particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model,
with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic
deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress.
The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle
cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic defor-
mation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature,
and with results from the present neutron diffraction experiments.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Internal damage exerts a strong influence on the ductil-
ity of particle-reinforced metals: it decreases the rate of
work hardening of the composites which, in turn, hastens
the onset of tensile instability. As a consequence, the max-
imum tensile elongation of metal matrix composites tends
to be well below that of their unreinforced matrix [1–6].

Three physical forms of microdamage can appear in
particle-reinforced metals [7]: (i) interfacial debonding,
which generally signals a defective material [8–10]; (ii)
internal voiding in the matrix, particularly at strain concen-
tration sites along or near the reinforcement/matrix inter-
face [6,10–12]; and (iii) particle cracking, with cracks
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perpendicular to the largest elongation, i.e., perpendicular
to the applied load in tension and parallel to it in compres-
sion [6,8,13–21]. This third mechanism dominates in many
composites, notably in composites containing large angular
(i.e., comminuted) reinforcements [2].

Experimental quantification of damage and measure-
ments of its rate of accumulation can be achieved by sev-
eral means; broadly, these are separated into two classes,
namely direct and indirect methods [22]. Direct methods
are ones where damage is measured by ‘‘counting” damage
events within the strained material. This includes ‘‘post
mortem” metallography on deformed samples [2,23–27]
as well as several techniques that detect in situ damage
events while the sample is strained: acoustic emission
[28,29], in situ scanning electronic observation of strained
sample surfaces [30–32], neutron [33] and synchrotron
X-ray diffraction [34]. More recently, X-ray topography
(or radiography) and microtomography techniques have
also proved to be powerful methods [35–42]. Indirect
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methods are ones that monitor the progress of damage by
the change it imparts on a chosen property of the material.
Here, two main techniques are used, namely monitoring
the gradual decrease caused by damage in (i) the density
of the deforming material [11,43–45] or (ii) its Young’s
modulus [15,18,19,46–48].

Each method has its advantages and drawbacks. Direct
methods give, as their name indicates, direct quantitative
information on the progress of damage; however, they gen-
erally require considerable experimental effort (and some-
times can be influenced by artefacts of specimen
preparation [49]). Indirect methods, in particular tracking
Young’s modulus using load/unload cycles during a uniax-
ial test, are comparatively much easier to implement; how-
ever, these require an interpretation framework by which
the pertinent physical property change can be linked quan-
titatively to damage evolution within the material.

The importance of understanding the link between dam-
age and the mechanical properties of multiphase materials
is, therefore, twofold: it is a prerequisite to one’s under-
standing of the influence of damage on the strength of mate-
rials, and it is also the required framework for interpreting
measurements of its evolution by one of the most conve-
nient methods, namely tracking the evolution of Young’s
modulus. Several authors have addressed the issue, using
different approaches.

Damage in its various forms has been incorporated in
shear lag [50], mean-field [51–56], finite element models
[57–61], and also in models combining these approaches
[62–64]. While the former two methods arrive at global
properties by attributing different levels of damage to the
phases and then averaging stresses and strains in each
phase, finite element modelling is capable of capturing
stress and strain disturbances around localized damage
events. All three damage micromechanisms have now been
addressed in three-dimensional finite element simulations,
e.g., Refs. [57,65] for ductile matrix failure by microvoid-
ing, Refs. [58,66,67] for fracture of the brittle reinforce-
ments, and Refs. [52,61] for interface decohesion. The
effect of the reinforcement spatial distribution on damage
has also been addressed in finite element simulations, to
show that clustering significantly increases the fraction of
broken (spherical) particles, leading to enhanced reduction
in the composite flow stress and ductility [60].

A major limitation of finite element modelling is that
damage in two-phase materials such as particle-reinforced
metals develops gradually, generally remaining relatively
sporadic up to composite failure. This has the consequence
that, to model the behaviour of the material realistically, a
large number of second-phase particles must be included in
the unit cell used. Multiparticle cell simulations have been
conducted by some authors (e.g., by Ghosh and Moorthy
using a Voronoi cell approach [68], and by Llorca and
Segurado using a cubic unit cell [57,61]); however, this
vastly increases the complexity of the calculation. Other
authors have instead used averaging procedures, akin to
mean-field approximations, to model the influence of the
non-damaged composite surrounding simulated individual
damage events (e.g., Refs. [64,69]); this, of course, makes
the model approximate.

Compared with finite element simulations, mean-field
approaches have the advantage that their implementation
is far more direct, particularly if they can be reduced to
explicit analytical expressions. Among the several existing
mean-field approximations, the Mori–Tanaka model is gen-
erally used to simulate the influence of damage on the linear
[51,52,55,70–72] or non-linear [56] monotonic flow stress of
particulate reinforced metals. In particular, Zhao and Weng
developed a tensorial solution for the linear elastic [55] and
non-linear [56,73–77] behaviour of two-phase composites
containing partially debonded inclusions, varying the inclu-
sion shape and also accounting for the effect of the debond-
ing angle on the elastic response of the material [72].

The goal in this contribution is to propose a relatively
user-friendly framework for quantitative interpretation of
tensile test data on damaging materials made of a hard
and brittle inclusion phase embedded in a ductile metallic
matrix, and to test this model. The most important damage
mode is addressed, namely the cracking of particles, these
being of a stiff elastic phase in a more compliant power-
law matrix. Simplifications are made similar to those used
earlier with non-damaging composites [78], building on
recent developments in composite micromechanics to
arrive at comparatively simple expressions predicting the
composite uniaxial flow curve in the presence of damage.

Before the model is presented, however, some of its lim-
itations must be emphasized. The approach rests on con-
ventional mean-field approximations, necessary to
account for the interaction between particles at non-dilute
concentrations typical of most two-phase materials, and
also to extend linear elasticity models to non-linear defor-
mation; see Refs. [79,80]. In all rigour, this model is a
non-linear elasticity model that can be used by extension
to address the behaviour of plastically deforming materials,
provided that loading remains monotonic. When damage
appears while the material is strained, as is usually the case,
loading is, however, never monotonic at a local level: por-
tions of the non-linear matrix will change flow path, often
leaving the yield surface, at least temporarily. In what fol-
lows, these effects are simply ignored, and the flow stress of
a composite that has gradually accumulated internal dam-
age is assimilated to that of a composite that initially con-
tained the same amount of damage before it was deformed.
This, of course, is an approximation, as is apparent with
clarity, for example, from simulations of the (simpler) case
of damaging ceramic fibre reinforced metals loaded along
the fibre direction [81]. How much of a difference this
makes in the present case is open to question, given the fact
that, at any moment along its strain path, the composite
mostly contains damage sites that have seen, since damage
first appeared there, further deformation along its global
loading path. Also, as will be shown below, despite their
relative simplicity, resulting expressions provide satisfac-
tory agreement when compared with experiment. Still,
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the assimilation made of a damaging composite to a pre-
damaged composite may, in some cases (to be expected
particularly when there is little matrix hardening), make a
significant difference, a fact that the authors wish to
emphasize from the onset.

The model is presented below, and its predictions are
compared with results from the literature, both theoretical
and experimental. Then a more in-depth comparison is given
of the model with experimental data collected using neutron
diffraction, which offers non-destructive in situ access to lat-
tice spacings and hence to elastic strains within each phase of
the material, at depths that far exceed those attainable using
conventional X-ray sources [82]. The neutron diffraction
data are gathered on a high-volume fraction Al–Al2O3p

composite during tensile testing. The average stress in the
matrix parallel to the tensile direction is deduced, and these
experimental data are compared with the predictions of the
model. Specifically, the in situ matrix plastic flow curve is cal-
culated using tensile data from two other specimens in which
the evolution of damage was measured. Next, the analysis
for elastic load partitioning in the material is compared with
neutron diffraction data. Finally, the resulting matrix flow
stress parallel to the tensile direction is compared with that
measured directly on the same material using neutron dif-
fraction. The agreement is satisfactory in both cases, sub-
stantiating the relatively simple model proposed here.

2. Theory

A simplification of an earlier modification (cf., Ref. [44])
of a model described by Mochida et al. for cracked parti-
cles [52] is proposed. The Mochida model assimilates
cracked particles to a matrix crack. Because it was found
in earlier work that this assimilation of a cracked particle
to a matrix crack produces an unrealistically strong
decrease in composite modulus, the cracks were replaced
with an equal number of flat spheroids of finite aspect
ratio; the resulting model gave good agreement when com-
pared with data for the damage evolution of high volume
fraction alumina particle-reinforced aluminium [44].
Now, as these flat spheroids play only a minor role (given
their low volume fraction), the greatest difference in the
model between cracked and uncracked particles is, in fact,
the replacement of the former with nearly as much matrix.
The present contribution, therefore, takes the small extra
step of simply assimilating a strongly bonded cracked par-
ticle surrounded by ductile matrix material to an equal vol-
ume of (undamaged) matrix. Inherent in this model is that
only individually cracked particles are considered, not the
linking-up of several particle cracks to form a macroscopic
crack. In what follows, this model is designated the VCP
(vanishing cracked particle) model.

2.1. Elastic VCP model

To simulate the influence of particle cracking, all
cracked particles are simply replaced with an equal volume
of matrix phase, making use throughout of the Mori–
Tanaka approximation to compute the composite modulus
from that of its (two isotropic) constituents.

Assimilating cracked particles to an equal quantity of
undamaged matrix is not an intuitive approximation (it
would not hold true with elongated fibres, for example);
however, justifications exist. First, as already mentioned
above, essentially the same assumption well matches data
from an earlier study [44] (see Section 3.2). Secondly, this
assumption is coherent with findings from finite element
simulations of single-particle unit cells. Shen et al. [83]
indeed concluded that, when the Young’s modulus of the
reinforcement is about three times the Young’s modulus
of the matrix, the stiffness of a unit cell containing a cracked
cylindrical particle falls near that of one made entirely of
matrix. Also, finite element calculations of stresses around
cracked linear elastic isotropic spheroidal particles five times
stiffer than a surrounding isotropic linear elastic matrix con-
ducted by Cho et al. show that the matrix stress concentra-
tion remains near unity when the inclusion is spherical (see
Figs. 4b and 11b of Ref. [84]). This, too, is consistent with
the present assumption, as around such cracked stiff parti-
cles the stress field is then roughly the same as if the particle
were replaced by matrix. Note also that this hypothesis and
all calculations that follow can only be used for a composite
deforming under uniaxial tension.

The Young’s modulus (along the applied stress direc-
tion) of the composite containing a volume fraction Vr2

of cracked particles is then given by

Ec ¼
9KcGc

Gc þ 3Kc

ð1Þ

where

Kc ¼ Km þ
ð1� V m � V r2ÞðKr � KmÞð3Km þ 4GmÞ
3ðV m þ V r2ÞðKr � KmÞ þ 3Km þ 4Gm

Gc ¼ Gm þ
ð1� V m � V r2ÞðGr � GmÞGm

bmðV m þ V r2ÞðGr � GmÞ þ Gm

with

bm ¼
6

5
� Km þ 2Gm

3Km þ 4Gm

where Vm and Vr2 are, respectively, the matrix volume frac-
tion and the volume fraction of damaged particles (the vol-
ume fraction of intact particles Vr1 is then simply 1 � Vr2

� Vm). Km, Gm, Kr and Gr are the bulk and the shear mod-
uli of the matrix and the reinforcement, respectively.

If the reinforcing phase is perfectly rigid relative to the
matrix phase, and both the matrix and the reinforcement
are incompressible, Eq. (1) reduces to

Ec ¼
3

2
� 5� 3V m � 3V r2

V m þ V r2

� Gm ð2Þ

The corresponding matrix stress concentration factor Bm,
defined as the ratio of the load borne by the matrix over
the load borne by the composite in the elastic regime, is gi-
ven in Appendix A.
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2.2. Extension to non-linear behaviour

Extension of the relations defined for linear elasticity to
monotonic elastoplastic matrix behaviour of the two-phase
composite containing ‘‘vanishing cracked particles” is
obtained using results from the variational principle of
Ponte Castañeda [85], shown by Suquet [86] to be equiva-
lent to a ‘‘modified” secant formulation. A Hollomon law
is used to describe the plastic flow curve of the matrix
material obeying von Mises plasticity with power-law
hardening:

�r ¼ c � en
pl ð3Þ

where �r is the matrix flow stress, epl is the equivalent plastic
strain, c is the matrix strength coefficient, and n is the ma-
trix strain hardening exponent.

Secant modulus methods assimilate the matrix to a lin-
ear elastic material with appropriately chosen moduli at a
given stage of total equivalent deformation etot [87]. The
secant Young’s modulus of the ductile matrix Ems is given
by

Ems ¼
req

etot

¼ 1
1

Em
þ epl

req

ð4Þ

where req is the equivalent stress. The secant bulk modulus
of the matrix metal Kms is equal to its linear elastic bulk
modulus, as the matrix is plastically incompressible.

The secant shear modulus satisfies the usual relations for
an isotropic material [88]; at the same time it is related to
req by

Gms ¼
3EmsKms

9Kms � Ems

¼ 1

1
Gm
þ 3

req

req

c

� �1=n
ð5Þ

In the dual formulation of the ‘‘modified” secant modulus
approach, the equivalent stress in the matrix is estimated as
the volumetric average of the second-order moment of the
stress field in the linear comparison material. This second-
order moment is related to the overall compliance tensor
Mc by

r2
eq ¼

3

V m

Rc :
oM c

oð1=GmÞ

� �
Gm¼Gms

: Rc

" #
ð6Þ

where Rc is the second-rank stress tensor applied to the
composite material. Under uniaxial tensile conditions, Rc

contains only a single non-zero value R (in the tensile direc-
tion). Eq. (6) may then be simplified as

R ¼
ffiffiffiffiffiffiffi
V m

3a

r
� req ð7Þ

where

a ¼ oð1=EcÞ
oð1=GmÞ

� �
Gm¼Gms

:

Parameter a is the partial derivative of the inverse of the
composite secant Young’s modulus, varying as a function
of the inverse of the matrix secant shear modulus; this ratio
depends on the average matrix equivalent strain.

The total axial composite strain Ntot is deduced knowing
the composite secant Young’s modulus Ecs obtained from
Eq. (1) or Eq. (2), where Gm is replaced by Gms

Ntot ¼
R

Ecs

ð8Þ

Knowing the stress carried by the composite from Eq. (7)
and deducing its overall axial strain from Eq. (8), the plas-
tic axial strain of the two-phase material can then be
calculated

Npl ¼
R

Ecs

� R
Ec

ð9Þ

It is shown below that it is possible to simplify the resulting
expression considerably, also in the presence of damaged
particles, if one makes a few reasonable assumptions.
3. Model behaviour

3.1. Predictions for model materials

The elastic constants of the matrix phase are taken, for
the sake of illustration, to be characteristic of aluminium,
namely Km = 75 GPa and Gm = 26 GPa. Two types of
finite modulus elastic inclusions are considered: (i) alumin-
ium spheres with the same elastic parameters as the matrix
(no contrast: Al–Alel); and (ii) alumina spheres with the fol-
lowing elastic moduli: Kr = 238 GPa and Gr = 164 GPa
(high contrast composite of Al–Al2O3). The limiting case
of a material with an incompressible matrix and reinforce-
ment, and with the inclusions perfectly rigid relative to the
matrix (infinite contrast: Km/Gms = Kr/Gr = Gr/Gms =1)
is also considered.

3.1.1. Elasticity

Fig. 1 shows the results obtained with Eq. (1) for an alu-
minium matrix reinforced with alumina particles, as well as
results obtained with Eq. (2) for the ‘‘infinite contrast”
composite. Solutions for aluminium particles (i.e., ‘‘no con-
trast” composite) are not plotted, because they are trivial.
The horizontal axis is the total volume fraction of broken
particles. This value cannot exceed the total volume frac-
tion of particles present; hence, these lines stop where Vr2

reaches its maximum value of (1 � Vm).
With increasing phase contrast, both families of curves

decrease: cracking of a stiffer particle causes a higher rela-
tive reduction in composite modulus. The curves separate
for differing volume fraction of particles (Vm), but remain
fairly close to one another. This means that, for all practi-
cal purposes, the relative decrease in modulus caused by
particle cracking can be taken to be independent of the
total fraction of particles in the composites. The maximum
difference between solutions obtained for the more realistic
alumina–aluminium system with varying volume is �6%.
The relative modulus drop, and thus the Young’s modulus
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based damage parameter, DE = 1 � Ec/Ec0 (where Ec0 is
the modulus for the intact material), then becomes a direct
function of the volume fraction of cracked particles.

Note that the elastic results for the ‘‘infinite contrast”
composite are shown only for completeness. If the phase
contrast is finite, assuming perfectly rigid inclusions leads
to an overestimation of the composite stiffness; however,
Eq. (2) is useful and valid for the estimation of the overall
plastic behaviour, as presented below.

3.1.2. Plasticity

Fig. 2 gives examples of tensile curves predicted for
selected (realistic) material parameters, with three levels
of elastic phase contrast (none; aluminium/alumina; infi-
nite) and two levels of damage (zero or 20% of cracked par-
ticles). These curves were traced using Eq. (3) to calculate
the plastic behaviour of the matrix and Eq. (9) to calculate
the plastic behaviour of the composite. For Al–Alel and
Al–Al2O3, Ec and Ecs are determined using Eq. (1). For
the ‘‘infinite contrast” composite, Ec and Ecs are deter-
mined using Eq. (2). As can be seen, the elastic phase con-
trast exerts essentially no influence on the plastic behaviour
of the damaged composites; this was also found for undam-
aged composites in Ref. [78].

3.1.3. Simplification of the relations governing the

elastoplastic behaviour

Given the indifference of plastic flow stress predictions
to the elastic phase contrast, Eq. (2) is hereafter used in
place of Eq. (1). Moreover, in predicting the composite
flow curve, elastic and plastic strain contributions are sep-
arated as in Ref. [78].

The ratio between the damaged composite flow curve
and the unreinforced matrix flow curve C/c, when the
matrix is incompressible and the inclusions are perfectly
rigid, is given directly by Eq. (10). If the composite contains
no broken particles, Eq. (10) becomes equivalent to Eq.
(5.15) of Ref. [85].

C
c
¼ R

r
¼

5
2
� 3

2
V m � 3

2
V r2

� �1þn
2

ðV m þ V r2Þn
ð10Þ

where R and r are, respectively, the composite and the
unreinforced matrix flow curve. Note the simplicity of this
equation.

Similarly to the method presented in Ref. [78]

Ntot ¼
R
Ec

þ R
C

� �1=n

ð11Þ

is assumed, where Ec is deduced from Eq. (1), and C is gi-
ven by Eq. (10). Fig. 3 confirms that there is little difference
between the elastoplastic behaviour predicted by the com-
plete variational method and by the simplified Eq. (11),
as was also shown in Ref. [78].

An analytical expression is finally deduced giving the rel-
ative reduction in composite flow stress caused by internal
damage (Eq. (12)), as a function of n, Vm and Vr2

R
R0

¼ 5� 3V m � 3V r2

5� 3V m

� �1þn
2

� V m

V m þ V r2

� �n

ð12Þ

where R0 is the undamaged composite flow stress.
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3.2. Confrontation of analysis with data from the literature

3.2.1. Comparison with the theoretical results of Cho and

Tohgo
Cho et al. [84] conducted finite element calculations of

the load-carrying capacity of an isotropic linear elastic
ellipsoidal inhomogeneity fractured in its mid-plane and
embedded in an isotropic linear elastic matrix. Results
from these calculations were then used by Tohgo and
Cho [89] to propose a model describing the effect of crack-
ing (as well as debonding) of the reinforcement on the over-
all composite Young’s modulus. Fig. 4 shows the ratio Ec/
Ec0 for a metal matrix composite with a fraction Vr of
spherical particles as calculated by the present method
and by their method. Both approaches remain close to
one another over all plotted values of parameters Vm and
Vr2.

3.2.2. Comparison with finite element simulations

Segurado and Llorca [66] simulated the influence of par-
ticle fracture on the tensile behaviour of an elastoplastic
matrix, using a unit cell containing seven spherical inclu-
sions, again with parameters relevant to the aluminium/
alumina system and with n = 0.15, Vm = 0.85. Their
results, plotted in Fig. 8 of Ref. [66], give R/R0 = 0.96
and 0.90 for Vr2/Vr = 0.14 and 0.43, respectively. Corre-
sponding predictions of the VCP model are R/R0 = 0.96
and 0.87, respectively. Comparison of the present relatively
simple equations with the large unit cell simulations of
Segurado and Llorca is thus quite satisfactory. Note that
agreement is more erratic when present predictions are
compared with results from finite element calculations
based on mono-particle two-dimensional or axisymmetric
unit cells [90]. The fact that such models are prone to local-
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ization of deformation in the matrix along bands that tra-
verse the composite can be advanced as an explanation.

3.2.3. Confrontation with experimental data of Kouzeli et al.

The quantitative link between Young’s modulus and the
flow stress as a function of the strain was experimentally
measured by Kouzeli et al. [2], defining stiffness-derived
and stress-derived damage parameters, DE = 1 � Ec/Ec0

and DR = 1 � R/R0, respectively. The former was measured
using unload/reload cycles on incrementally strained (and
hence damaged) composites, while the latter was assessed
by measuring the flow stress during reloading after anneal-
ing of previously deformed (and hence damaged) compos-
ites. Linear regression of the experimental data plotted in
Fig. 9 of Ref. [2], with lines passing through the origin leads
to the conclusion that, for a composite of pure Al rein-
forced with a volume fraction of 47.5% Al2O3, DR is
approximately 0.7 times DE. The present VCP model (most
suited since damage occurs predominantly by particle frac-
ture in these composites) leads to the estimation that the
ratio between DR and DE is indeed relatively constant, with
a value of 0.61.

The investigations of Kouzeli et al. also comprised a few
metallographic estimations of the fraction of broken parti-
cles in alumina or boron carbide reinforced composites
with a matrix of pure aluminium, deformed plastically
and, as a result, containing cracked particles. In parallel
experiments, DE was also measured for these composites
as a function of plastic strain [44]. Fig. 5 compares experi-
mental values for DE with predictions of the present VCP
model computed from the estimated fraction of broken
particles given by metallography in composites deformed
to the same strain. The agreement is relatively good for
the VCP model if one takes into account the difficulty in
obtaining accurate measurements of the proportion of
cracked particles by metallography (see estimated error
bars in that figure). Also shown in Fig. 5 are the results
obtained with a model developed by Zhao and Weng
[55,91] for damage in the form of debonded particles,
which are assimilated to anisotropic (but perfectly bonded)
particles; this model is called the DP (debonded particle)
model. Comparatively, predictions of DE for the DP model
are clearly too high for these (non-debonding) composites.

Confrontation of other experimental data from this
study, comparing measured density-derived and modulus-
derived damage parameters for these composites, with the
VCP model has already been documented to give good
results [44]. Indeed, the modified Mochida model used in
that reference gives results essentially coincidental with
the present VCP model.

3.2.4. Other data

Note that other data exist in the literature, giving metal-
lographic assessments of the fraction of damaged particles
together with measurements of the relative decrease in
Young’s modulus as a function of plastic strain
[51,92,93]. These, however, are for composites with alloyed
matrices that contain second phases other than the rein-
forcing particles. Therefore, additional internal damage
mechanisms exist in these composites. Hence, these are
not used for comparison; it is noted only that, in these com-
posites, the measured modulus decrease often exceeds pre-
dictions of the VCP model, as is indeed expected if there is
additional damage beyond particle cracking.

4. Experiment

4.1. Experimental procedures

To compare the model with in situ neutron diffraction
measurements, a composite of pure aluminium (99.99%
Al) reinforced with 30 lm size angular alumina particles
(a-Al2O3, from Treibacher Schleifmittel, Laufenburg, Ger-
many) was produced by gas pressure infiltration. Detailed
descriptions of the process and the composite microstruc-
ture are given elsewhere [44,94,95]. A spatially uniform dis-
tribution and a high volume fraction of the ceramic
reinforcement (Vr = 44 vol.%) are distinctive features of
the resulting material (Fig. 6). These composites yield grad-
ually in tension from �45 MPa, strain harden up to an ulti-
mate tensile stress of 120 MPa at a plastic strain of 3–4%,
and fracture shortly thereafter.

The Spectrometer for Materials Research at Tempera-
ture and Stress (SMARTS [96]) at the Los Alamos Neutron
Science Center, NM, was used to measure in situ the matrix
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elastic strain on the composite subjected to uniaxial tensile
loading. The sample, of dogbone shape (with
4 � 9 � 45 mm3 gauge section volume), was irradiated with
a polychromatic neutron beam generated by a pulsed
source. Principal beam characteristics include a continuous
d-spacing range of 0.5–4 Å and an analysed target volume
of 14 � 4 � 9 mm3. Two detector banks, situated on a
plane normal to the incident beam, capture the scattered
neutrons parallel and perpendicular to the tensile axis. By
measuring the time of flight of the diffracted neutrons, their
wavelengths can be calculated from de Broglie’s relation-
ship. Principles of neutron diffraction for strain measure-
ment, using Bragg’s law to measure the lattice spacing of
several crystallographic orientations in each phase, are
described in Refs. [7,82,97].

The application of the diffraction technique to measure
strain and, consequently, stress partitioning is limited by
the microstructural features of the observed materials.
Indeed, in order to obtain a representative average value,
various crystallographic planes are required. The grain size
of the matrix, together with the volume fraction and size of
the reinforcement particles, greatly influences the validity
and precision of the results. With the present composites,
the very large matrix grain size (�1 cm) restricts observa-
tion to a limited number of usable matrix reflections.
Moreover, interpretation of reflections from the alumina
particles is made difficult because they break during the
test, which causes a global shape change (and not just a
shift) of the alumina reflection peaks. The single peak
refinement method is therefore used instead of the Rietveld
refinement method to analyse the data [98]. The software
used is the general structure analysis system (GSAS) [99].
A sketch of the set-up is shown in Fig. 2 of Ref. [100].

In order to quantify load sharing between reinforcement
and matrix during tensile testing, diffraction patterns were
measured at several composite plastic deformations. Spe-
cifically, at each step of applied plastic strain, the diffrac-
tion patterns were recorded at 30%, 50%, 70% and 90%
of the flow stress after eight prior unload–reload cycles
Fig. 6. Micrograph of metallographic cross-section of as-cast pure Al
reinforced with 44% angular 30 lm Al2O3 particles.
(Fig. 7). This procedure was used to minimize microplastic-
ity effects in the soft matrix, manifest as a measurable
amount of stress relaxation if the sample is kept at its full
flow stress during the roughly ten minutes of exposure to
the neutron beam needed for diffraction data acquisition
(such relaxation is not unexpected, given that the matrix
consists of high-purity aluminium [101]). At zero initial
plastic strain, the data were collected at five values of elas-
tic strain: to capture the first diffraction point, the material
was stressed in tension at 3 MPa, then the stress was raised
to 40 MPa, with diffraction measurements recorded at
every 10 MPa stress increment, without cycling. These
applied stress values were selected below the offset yield
point of 43 MPa (r0.02% in Ref. [102]), again in order to
avoid transient (anelastic or viscous) effects caused by
relaxation of the pure aluminium matrix.

4.2. Experimental results

The lattice spacings along a series of Al111 crystallo-
graphic planes, normal to the tensile axis, yielded exploit-
able neutron diffraction data. Parallel to the loading axis,
only the Al200 orientation (of another grain) was exploit-
able. Fig. 8 shows the d-spacing evolution parallel (Al111)
and perpendicular (Al200) to the loading direction as a
function of applied stress, each curve corresponding to a
different step of composite tensile plastic strain prior to
elastic unloading–reloading cycles. As expected, in the ten-
sile direction the d-spacing increases linearly as the stress
increases between two levels of composite load prior to
plastic deformation, with roughly the same slope (indicated
by the fitted lines for the five last series of measurements)
(Fig. 8a). Perpendicular to the tensile direction, the d-spac-
ing decreases slightly with increasing applied stress
(Fig. 8b).

Elastic phase strains in the matrix for each composite
stress increment DRA are deduced using Al111 and Al200

plane spacing measurements according to:

Deel
Alhkl
¼ dAlhklð Þ2 � dAlhklð Þ1

dAlhklð Þ1
ð13Þ
Fig. 7. Schematic description of diffraction data acquisition along stress vs
strain curve of the composite at each applied tensile strain step.
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with indices 1 and 2 corresponding to the lower and upper
load level measurements, respectively, conducted at 30%,
50%, 70% and 90% (cf., Fig. 7). The ratio of transverse
strains (cf., Fig. 8a) to longitudinal strains (cf., Fig. 8b) is
�–0.25, which is lower in absolute value than would be ex-
pected for uniaxial deformation, i.e., the (negative) value of
the matrix Poisson’s ratio of 0.345. Hence stresses are triax-
ial, notably tensile normal to the loading axis, as expected
for a matrix that is reinforced with hard particles. Three
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Fig. 8. d-Spacings vs applied stress for (a) Al111 parallel and (b) Al200

perpendicular to the loading direction at ten levels of composite prior
tensile strain eA given in the insert. Experimental uncertainty on d as given
by the diffraction data analysis software is ±4 � 10�5 Å for Al111 and
±7 � 10�5 Å for Al200.
increments of elastic strain Deel
Alhkl

are available at each step
of composite plastic deformation. For each, the matrix lin-
ear elastic stress concentration factor (or stress transfer fac-
tor) Bm can be computed as

Bm ¼
Dr1

DRA

ð14Þ

where Dr1 is defined as the stress in the matrix parallel to
the tensile axis. Two methods can be tested to calculate
Dr1:

(i) The sampled matrix grain is assimilated to a single
crystal, for which the axial strain is that corresponding
to the sampled (111) reflection (Al111) and stress triaxial-
ity is ignored:

Dr1 ¼ EAl111
� Deel

Al111
ð15Þ

or
(ii) the matrix is supposed isotropic and the transverse
strains (sampled using reflections from other matrix
grains) are taken into account:

Dr1 ¼
EAl � Deel

Al111

1þ mAl

þ
mAlEAlðDeel

Al111
þ 2Deel

Al200
Þ

ð1þ mAlÞð1� 2mAlÞ
ð16Þ

EAl111
¼ 76 GPa, EAl = 70 GPa and mAl = 0.345 [103].
0
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Fig. 9. Matrix elastic stress concentration factor as a function of applied
tensile plastic strain. Data for Samples 1 and 2 are calculated through the
present VCP model from the measured evolution with strain of the
composites’ Young’s modulus. Experimental error on computed values of
Bm for Samples 1 and 2 (due to uncertainty of the measured values of
Young’s modulus of ±2 GPa [44]) is ±0.01. Results for the ND sample are
interpreted using Eq. (15) (squares) or Eq. (16) (triangles); experimental
uncertainty on these points, reflected in plotted error bars, is estimated
from the spread in raw data points in Fig. 8.
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For each level of prior composite tensile deformation,
values of Bm were computed for the three available elastic
strain increments. Thus, for each plastic strain step, three
Bm values were obtained, for which the average was then
calculated (error bars are the standard deviations); this is
plotted as black square and triangle points in Fig. 9. Dr1

is calculated from Eq. (15) in Fig. 9a, and from Eq. (16)
in Fig. 9b. The results are similar; only the error bars are
larger because of additional error associated with trans-
verse strains.

5. Model vs experiment

In the present Al composite containing 44% vol. angular
30 lm Al2O3 particles, internal damage caused by tensile
elongation predominantly takes the form of particle frac-
ture, cf., Figs. 2a,b and 3a given in Ref. [44] as well as
Fig. 6a given in Ref. [2]. Earlier work on those materials
gives, with greater precision (because the specimen strain
measurement was far more precise than in the tensile test-
ing set-up used in neutron diffraction experiments), both
the stress–strain curve of the composite and the evolution
of internal damage as measured by the modulus-derived
internal damage parameter DE, defined as

DE ¼ 1� E
E0

ð17Þ

where E is the instantaneous composite Young’s modulus
and E0 is Young’s modulus of the undamaged (i.e., as-pro-
cessed) composite [2,15,18,19,44,46]. The stress–strain
curve and the damage–strain curve are plotted in Fig. 10
for two separate samples of the same material as tested here
in neutron diffraction (Samples 1 and 2 in the present work
correspond to samples numbered (140)A29 and (20)A29 in
Ref. [104]). Neutron diffraction results of the present work
can then be compared with theory in two separate ways:
one testing linear elastic deformation and the other non-
linear plastic deformation.

The data in Fig. 8, collected for the neutron diffraction
(ND) sample, give access to the average stress borne by the
matrix through the matrix stress concentration factor Bm

(see Fig. 9). It is apparent from this figure that Bm increases
weakly as composite deformation progresses. This positive
slope is explained by the fact that, with increasing strain,
the fraction of broken particles increases such that the frac-
tion of stress applied to the composite that is carried by the
matrix (and thus Bm) increases. These diffraction-derived
data for Bm of the ND sample provide a test of linear theory,
as they can be compared with values predicted by analysis of
damage data for DE of Samples 1 and 2 in Fig. 10.

A second test of data is in the non-linear plastic regime
of deformation. Indeed, the extension of the model to non-
linear deformation can be used to derive the matrix in situ
stress–strain curve from the composite tensile data in
Fig. 10. The axial stress in the matrix can then be compared
with that given directly by neutron diffraction data, by sim-
ple linear extrapolation of matrix stress values measured
during reloading cycles up to the full composite flow stress.
These two comparisons are made in turn below.

5.1. Matrix stress concentration factor in linear elastic

deformation

The undamaged composite flow curve is approximated
using a classical power-law (Hollomon) relation
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R0 ¼ C � Nn
pl ð18Þ

where C is the undamaged composite strength coefficient,
while Npl is the composite plastic strain.

Knowing the evolution of DE, and hence of Ec, as a
function of composite plastic strain for each of the two
samples plotted in Fig. 10, the volume fraction of damaged
particles Vr2 can be calculated using the Mori–Tanaka
approximation (cf., Eq. (1)). The matrix stress concentra-
tion factor Bm can then, in turn, be deduced; the solution
is given in Eq. (A.1).

The results for Samples 1 and 2 are compared in Fig. 9
with neutron diffraction data. All the results are close to
each other, substantiating the model. The apparent devia-
tion of the neutron data points at low strain can be attrib-
uted to low applied stress (<120 MPa), to slight initial
specimen misalignment, or perhaps to an influence of ther-
mal residual stresses present after manufacturing.
0
0 0.05 0.1 0.15 0.2 0.25

DE = 1 - Ec/Ec0 [-]

Fig. 11. Calculated relation between DS and DE for Al–Al2O3 containing
44% of particles for four values of the work-hardening exponent n.
5.2. Matrix in situ flow stress

The in situ matrix stress–strain curve is computed from
that of the composite in two steps. First, the measured val-
ues of DE are taken to deduce, using the VCP model, the
stress–strain curve that the same composite would exhibit
in the absence of damage. Then, this curve is fitted to a
power-law and, from this undamaged (or ‘‘effective” in
damage mechanics terminology [46]) composite flow curve,
the matrix in situ stress–strain curve is deduced using equa-
tions given in Ref. [78].

The first step is eased considerably by the fact that the
ratio a between DR, the fractional decrease in composite
flow stress caused by internal damage, and DE,

DR

DE
¼ a ¼

1� 5�3�V m�3�V r2

5�3�V m

	 
1þn
2 � V m

V mþV r2

	 
n

1� 5�3�V m�3�V r2

ð5�3�V mÞ�ðV mþV r2Þ
� V m

ð19Þ

is, for all practical purposes, constant over a wide range of
Vr2. This is shown in Fig. 11: DE and DR (calculated,
respectively, via Eq. (1) and Eq. (12)) are essentially pro-
portional for parameters relevant to the present
composites.

Because the experimental tensile stress R applied on the
composite is known, it is then straightforward to compute
the flow stress at a given strain of the same composite in the
undamaged condition R0 [46]. Indeed, using the calculated
a and the experimental evolution of DE with composite
strain, R0 becomes

R0 ¼
R

1� DR
¼ R

1� a � DE

ð20Þ

Computing the undamaged composite flow curve from the
(damaging, real) composite flow curve knowing the evolu-
tion of DE must be done iteratively, since the power-law
exponent n of the matrix (and hence of the undamaged
composite) is a priori unknown. This is easily done, how-
ever, because calculated a values not only remain nearly
constant as damage accumulates, but also vary slowly with
n. The relevant value of n is normally reached after one
iteration using a reasonable ‘‘first-guess” estimation of
the relevant a.

Fig. 12 shows, in logarithmic coordinates, the measured
and corresponding undamaged composite flow curves (R
and R0, respectively, as functions of plastic composite
strain) for Samples 1 and 2. Although the data nearly lie
along a straight line in the double logarithmic plot,
power-law hardening is not strictly obeyed: there is a slight
downward curvature in the derived data points. Therefore,
the work-hardening exponent of the composite varies by
approximately 20%, depending on where data points are
fitted. This is not unexpected, as there is no fundamental
reason why the Hollomon power-law (Eq. 18), used here
for convenience in mechanical analysis, should be strictly
obeyed by either the composite or its matrix.

The value of n was computed by fitting a straight line
through data points in the range from 1% to 3% of tensile
strain, as shown in Fig. 12. This yields n = 0.16 and 0.14
for Samples 1 and 2, respectively. These values are reason-
able for pure aluminium (e.g., Ref. [105]) and not very dif-
ferent from that obtained using the (more crude)
estimation DR � DE practised in damage mechanics and
used in earlier work on these composites [2,48,102,104,106].

The appropriate value of a is then calculated using the
VCP model, which predicts that a = 0.57 (DR = 0.57DE)
with Vr = 0.44 and n = 0.16, and a = 0.54 (DR = 0.54DE)
when Vr = 0.44 and n = 0.14. The deduced undamaged
composite strength coefficients C obtained from the two
tests are then 242 and 218 MPa, respectively; the difference
is relatively small, as can also be seen by comparing the two
curves in Figs. 10 and 12.
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From these curves, using Eq. (28) in Ref. [78] with
Vr = 0.44 and C = 242 (n = 0.16) or 218 MPa (n = 0.14),
constant c of the matrix plastic flow law is deduced (Eq.
(3)). This yields values c = 164 and 151 MPa, for the two
samples, respectively.

To compute the plastic strain associated with the matrix
equivalent stress req, it is simply noted that the ceramic
particles essentially do not deform compared with the elas-
toplastic matrix. Also, the additional strain caused by par-
ticle fracture was measured and shown to be very small in
this system [44]. The two back-calculated matrix in situ
stress–strain curves are plotted in Fig. 10a and b, respec-
tively; they agree relatively well with one another.

In the above computations, the influence of internal
residual stresses of thermal origin has been neglected. Such
stresses are known to exist in metal matrix composites and
can influence the in situ matrix flow curve [107]. Their
neglect in the present instance is justified on two grounds:
(i) the matrix is of high-purity aluminium, which creeps
easily at high temperature and also relaxes at room temper-
ature; hence, residual stresses are likely to be small, and (ii)
mean-field calculations of Hu and Weng [107] show that
residual stresses of thermal origin exert relatively little
influence on the tensile flow curve of elastic sphere rein-
forced metals after a relatively small strain past initial
yield. Experimental data from the literature also suggest
that it is legitimate to neglect internal stresses in this sys-
tem. Indeed, Johannesson and Ogin [108] have shown that
mean tensile thermal stresses in the matrix of similar short
fibre composites are only �10 MPa. Johannesson et al.
[109] also noticed that the relaxation rate is higher in par-
ticulate composites than in fibre composites. Finally, Pov-
irk et al. [110] as well as Fiori et al. [111] observed that
thermal stresses in 2000 series Al alloy matrix composites
are reduced strongly after even a relatively small amount
of composite strain (0.5%), as suggested by the calculations
of Hu and Weng [107].

The axial matrix stress parallel to the tensile direction r1

at a given value of the composite stress is Rir deduced
from:

r1 ¼ Bms � R with Bms ¼
2þ V r1

2þ 3V r1

ð21Þ

where Bms is the secant matrix stress concentration factor
for an incompressible matrix and a perfectly rigid rein-
forcement. Vr1 is the fraction of intact particles and is de-
duced from Eq. (1), knowing the damage–strain curve of
the two Samples 1 and 2. Fig. 13 shows the calculated axial
matrix stresses as a function of the plastic tensile strain ap-
plied to the composite for Samples 1 and 2.

Neutron diffraction data can now be used to deduce the
corresponding in situ matrix axial stress directly from the
matrix diffraction data of the neutron diffraction sample.
Because diffraction data were not taken along the tensile
curve of the composite but rather during elastic unloading
cycles at stresses below the composite flow stress (as
explained earlier, this was done to avoid stress relaxation),
the in situ matrix axial stress is deduced from the data in
Fig. 8 by linear extrapolation of the lines through data col-
lected at 30%, 50%, 70% and 90% of the composite yield
stress to 100% of that value. This procedure gives the
matrix stress at each point from which the composite was
unloaded/reloaded along its flow curve.

The resulting data from neutron diffraction are shown in
Fig. 13 as full squares (single crystalline matrix; Eq. (15))
or triangles (isotropic matrix; Eq. (16)). These are in good
agreement with the matrix in situ axial stress determined as
described above for Samples 1 and 2 from theory using ten-
sile data.

The general performance of the simple model presented
here for the uniaxial deformation of linear and power-law
composites damaging by particle cracking is, in conclusion,
quite satisfactory, especially if one takes into account its
simplicity and the fact that no adjustable parameters were
used in the present comparison with data. While the model
is simple and relatively user friendly, it rests on assumptions
and is restricted to uniaxial loading: as the composite under-
goes damage during deformation, it becomes anisotropic.
This is an important point not to be overlooked in extending
analysis to multiaxial deformation [112,113]. Although sim-
ple extensions of the model for uniaxially loaded composites
stressed along other directions than the deformation axis are
fairly obvious, the model as presented here is hence not
intended for multiaxial deformation.
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A second limitation is that it assumes particles of spher-
ical shape. Particles such as those in the present composites
are, in fact, angular (Fig. 6). An earlier study using metal-
lography coupled with stereological analysis found that
these particles are closer to oblate spheroids with an aspect
ratio w � 0.30 than to spheres [114]. The influence of the
finite aspect ratio of the present particles is, however, likely
to be small, and can most likely be neglected in the calcu-
lation. Taking w = 0.3 and Vr = 0.5, the modulus increase
computed with Benveniste’s [115] modification of the
Mori–Tanaka scheme to a random (isotropic) orientation
of inclusions yields a stiffness increase of a mere 4%, as
compared with spherical inclusions.

Finally, further limitations to the applicability of the
model are also worth emphasizing. The model is intended,
and has been checked, for materials with a uniform distri-
bution of particulate reinforcement (no clustering) and
non-localized damage. Its applicability to composites con-
taining more than �50% particles was also not explored. In
the elastic regime, the ratio of stiffness of the reinforcement
over the matrix has to be �3–6 (as for typical MMCs, but
not, for example, for Al–Si); however, this limitation does
not apply to the plastic regime. And finally, the model
obviously does not account for damage modes other than
particle cracking (e.g., if matrix or interfacial void growth
and coalescence obtain).
6. Conclusion

A simple analytical approach that incorporates the
influence of internal damage by particle cracking is pro-
posed to predict the tensile flow curve of metals reinforced
with spherical particles of a hard second phase. The model
simply replaces a fractured inclusion with the same volume
of matrix. Relatively simple analytical expressions, namely
Eq. (1) for elastic and Eq. (12) for plastic behaviour of the
matrix, result. Agreement between this model and results in
the literature from both experiment and finite element sim-
ulation of composites of this type is satisfactory.

The model is then compared with data obtained from
neutron diffraction. Elastic unloading and reloading cycles
were conducted on pure aluminium reinforced by a high
volume fraction of alumina particles at different tensile
plastic strain levels. Neutron diffraction data were collected
during the elastic reloadings. These data are used to access
(i) the stress partitioning ratio between matrix and rein-
forcement within the composite, and (ii) the in situ matrix
axial stress during uniaxial tensile loading of the compos-
ite. Good agreement is found, both for linear elastic and
non-linear deformation.
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Appendix A

Bm ¼
1þ ðar1 þ br1 � 1ÞV r1

½1þ ðar1 � 1ÞV r1�½1þ ðar1 þ br1 � 1ÞV r1� � 2b2
r1V 2

r1

ðA:1Þ
where

ar1 ¼
F 1 þ F 2

F 2
1 þ F 1F 2 � 2F 2

2

and br1 ¼
�F 2

F 2
1 þ F 1F 2 � 2F 2

2

F 1 ¼ 1þ D1
3Kr þ Gr

9KrGr

� 3Km þ Gm

9KmGm

� �

þ 2D2

2Gr � 3Kr

18KrGr

� 2Gm � 3Km

18KmGm

� �

F 2 ¼ ðD1 þ D2Þ
2Gr � 3Kr

18KrGr

� 2Gm � 3Km

18KmGm

� �

þ D2

3Kr þ Gr

9KrGr

� 3Km þ Gm

9KmGm

� �

D1 ¼ 1� 9Km þ 8Gm

15Km þ 20Gm

� �
Km þ

4

3
Gm

� �

� 2 Km �
2

3
Gm

� �
3Km � 4Gm

15Km þ 20Gm

� �
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D2 ¼ 1� 9Km þ 8Gm

15Km þ 20Gm

� �
Km �

2

3
Gm

� �

� 2Km þ
2

3
Gm

� �
3Km � 4Gm

15Km þ 20Gm

� �

Km, Gm, Kr, Gr are the bulk and the shear moduli of the
matrix and the reinforcement respectively; Vm, Vr1, Vr2

are the volume fractions of the matrix, the intact reinforce-
ment and the broken particles.
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